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ABSTRACT 1 
Work zone is one of the major causes of non-recurrent traffic congestion and road incidents. Despite the 2 
significance of its impact, studies on predicting the traffic impact of work zones remain scarce. In this paper, 3 
we propose a data integration pipeline that enhances the utilization of work zone and traffic data from 4 
diversified platforms, and introduce a novel deep learning model to predict the traffic speed and incident 5 
likelihood during planned work zone events. The proposed model transforms spatial-temporal traffic 6 
patterns into 2D space-time images and employs an attention-based multi-context convolutional encoder-7 
decoder architecture to capture the spatial-temporal dependencies between work zone events and traffic 8 
variations. Trained and validated on four years of archived work zone traffic data from Maryland, USA, 9 
the model demonstrates superior performance over baseline models in predicting traffic speed, incident 10 
likelihood, and inferred traffic attributes such as queue length and congestion timings (i.e., start time and 11 
duration). Specifically, the proposed model outperforms the baseline models by reducing the prediction 12 
error of traffic speed by 5% to 34%, queue length by 11% to 29%, congestion timing by 6% to 17%, and 13 
increasing the accuracy of incident predictions by 5% to 7%. Consequently, this model offers substantial 14 
promise for enhancing the planning and traffic management of work zones. 15 
 16 
 17 
Keywords: Work Zone; Traffic impact prediction; Deep learning; Convolutional Neural Network; 18 
Attention; Encoder-decoder 19 
  20 
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1 INTRODUCTION 1 
The rising load on road infrastructures driven by population growth has resulted in an increased 2 

demand for road maintenance and reconstruction activities [1]. These work zone events often involve lane 3 
closures that will lead to more traffic crashes and delays caused by reduced road capacity. Unlike the usual 4 
congestion seen during peak traffic hours, work zone activities usually create non-recurring, unexpected 5 
travel delays. According to the Federal Highway Administration [2], work zones account for nearly 24% 6 
of non-recurring traffic congestion. Additionally, work zone events significantly endanger the safety of 7 
both travelers and workers; for instance, in 2022, traffic accidents in work zones resulted in 891 fatalities 8 
[2]. 9 

To address safety and mobility requirements during highway maintenance and construction, and to 10 
align with the expectations of the travelers, it is important for traffic management and work zone planning 11 
agencies to have an accurate estimation of how work zone events would impact the traffic. Modeling and 12 
predicting work zone impacts can enhance agency’s decision-making as well as their overall understanding 13 
of the factors affecting work zone decisions [3].  14 

Research on predicting the impact of work zones on traffic is very limited. Over the past few 15 
decades, related studies can be broadly divided into two categories: simulation or parametric-based 16 
approaches, and non-parametric, data-driven approaches. 17 

In the field of simulation-based studies, Ping and Zhu [4] estimated the changes in traffic capacity 18 
under various work zones using CORSIM. Chatterjee et al. [5] considered drivers’ behavior into simulation 19 
and developed a work zone traffic flow estimation model in VISSIM. Wen [6] developed a work zone 20 
traffic simulation model dedicated for connected traffic conditions. These simulation-based models usually 21 
only consider a few work zone factors and network configurations, thus are mostly unable to predict traffic 22 
conditions under unseen work zones with complex spatial-temporal patterns. 23 

As the availability of data expands, facilitated by development in sensors and data collection 24 
techniques, the focus of research is increasingly turning towards data-driven methods, even though these 25 
data are not yet fully integrated. On the data-driven side, Adeli and Jiang [7] created a neuro-fuzzy model 26 
to estimate the traffic flow impacted by work zones. The results demonstrated the model’s superiority over 27 
empirical approaches. Karim and Adeli [8] proposed an adaptive neural network model to predict the traffic 28 
impact including capacity, queue length, and delay during work zones. Hou et al. [9] developed four 29 
machine learning based work zone traffic prediction models: random forest, baseline predictor, regression 30 
tree, and neural network. The models are evaluated on two selected roadway segments in St. Louis, MO, 31 
USA. Also, Bae et al. [10] developed a multi-contextual machine learning method to model the traffic 32 
impact of urban highway work zones. By adopting machine learning based approaches, these models can 33 
handle more complex work zone conditions compared to the simulation-based models. However, the 34 
performance is still constrained due to overly simplified model assumptions and model structures. These 35 
models either provide only aggregated traffic indicator prediction or focus narrowly on a specific aspect of 36 
traffic impact caused by work zone events.  37 

Reviewing existing research highlights two major limitations in predicting the impact of work zone 38 
traffic. 1) The quality and quantity of data sources are limited, as there is often no comprehensive pipeline 39 
for integrating, curating, and augmenting work zone traffic data for enhanced data-driven methods; 2) The 40 
data-driven methods currently used are overly simplified and not capable of handling the complex and 41 
dynamic traffic variations associated with work zones. Consequently, there is a pressing need for a model 42 
that can effectively capture the dependencies between spatial-temporal traffic patterns and work zone 43 
characteristics, providing a holistic perspective on both mobility and safety impacts.  44 

The Work Zone Data Exchange (WZDx) Feed Registry, maintained by the U.S. Department of 45 
Transportation (USDOT), contains up-to-date metadata on work zone feeds that adhere to WZDx 46 
specifications [11]. Launched in 2019 by the Federal Highway Administration (FHWA) and the Intelligent 47 
Transportation Systems Joint Program Office (ITS JPO), this initiative seeks to enhance road safety and 48 
mobility by standardizing work zone data and ensuring its broad accessibility in a consistent format [12]. 49 
In this study, we utilize WZDx datasets from the ITS DataHub combined with the University of Maryland 50 
CATT Laboratory's Regional Integrated Transportation Information System (RITIS) data [12], providing 51 
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insights into travel times and traffic speeds across Maryland’s transportation network. Additionally, we 1 
integrate the Maryland Department of Transportation’s (MDOT) Annual Average Daily Traffic statistics 2 
and loop detector data with incident data from RITIS and MDOT to create an enriched work zone dataset 3 
for predictive model training.  4 

Besides the integration of multi-context datasets, the selection of data-driven models is crucial for 5 
estimating the traffic impact of work zones. Generally, traffic prediction models are categorized into short-6 
term and long-term traffic forecasts [20][21][22][29]. Both use a sequence-to-sequence or sequence-to-one 7 
approach, where a sequence of past traffic readings from the previous N timesteps is used to predict the 8 
traffic status for the following one or several timesteps, ranging from several minutes to multiple hours. 9 
These methods depend on the most recent traffic data to forecast future traffic conditions. However, these 10 
sequence-based models do not align with the objectives of our study. Our research aims to predict the traffic 11 
conditions on road segments with planned work zones well in advance before their implementation (e.g., 12 
days or weeks ahead), meaning no real-time traffic data at the time of making the prediction. To the best of 13 
the authors’ knowledge, none of the existing traffic prediction models are designed for such goals. Inspired 14 
by image-based sequence-to-sequence traffic prediction methods [23][24][31], which transform city-level 15 
space-time traffic states into 2D images for model inputs and outputs, this paper proposes a novel image-16 
to-image prediction method for work zone traffic forecast. This method converts the historical spatial-17 
temporal traffic patterns into multi-channel image inputs and conducts a joint representation with the 18 
planned work zone features to deliver a comprehensive traffic prediction for the entire duration of the work 19 
zones at once, which enables the estimation of the traffic impact with high time resolution for the planning 20 
of work zones.  21 

In summary, based on the curated dataset created by the data integration pipeline, we introduce an 22 
attention-based multi-context convolutional encoder-decoder neural network, named AMCNN-ED, to 23 
predict the impact of planned work zones, specifically focusing on mobility impact such as traffic speed, 24 
queue length, congestion start time/duration, and safety impact such as incident likelihood. The 25 
contributions of this paper are outlined as follows: 26 

• Developed a data curation pipeline that integrates work zone event data with traffic and roadway 27 
network datasets, creating an enhanced data source tailored for predicting the traffic impacts of 28 
work zone events. 29 
• Introduced an image-based modeling approach to estimate traffic impact caused by work zones 30 
by converting historical space-time traffic patterns into 2D images as model inputs. Based on that, 31 
we developed a novel attention-enhanced multi-context convolutional encoder-decoder neural 32 
network structure to capture the spatial-temporal dependencies between work zone characteristics 33 
and dynamic traffic patterns, enabling in-advance prediction of traffic impact (i.e., speed, queue 34 
length, congestion start time/duration, and incident likelihood) for planned work zones well ahead 35 
of time. 36 

• Conducted a comprehensive evaluation of the proposed model using a real-world dataset from 37 
Maryland’s transportation network, benchmarking it against baseline models to demonstrate its 38 
superior performance. 39 
The rest of this paper is structured as follows: Chapter 2 introduces the data curation pipeline 40 

proposed in this study. Chapter 3 outlines the prediction models developed for this study. Chapter 4 41 
introduces the experiment setup and benchmark models. In Chapter 5, the prediction results and analysis 42 
are presented. Finally, Chapter 6 concludes the paper and offers insights into potential directions for future 43 
research. 44 
 45 
2 DATA INTEGRATION AND RECONSTRUCTION 46 
2.1 Multi-Context Work Zone Data 47 

To construct a comprehensive work zone dataset, this study follows the process depicted in Fig. 1, 48 
which outlines the integration of diverse datasets. WZDx provides dynamic and detailed work zone data, 49 
which allows for the extraction of precise work zone information, such as locations, timings, and specific 50 
characteristics like lane counts and geometries, as well as potential vehicular impacts. Traffic data from 51 
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RITIS delivers link-level information, enriching the dataset with metrics like travel time and traffic speed, 1 
including historical and reference speeds. When combined with MDOT’s volume data and supplemented 2 
by incident data, the dataset achieves a high level of granularity, covering individual work zones and their 3 

wider impact on the transportation network. 4 
By incorporating these diverse data streams, we can acquire valuable operational metrics at the 5 

agranular level, encompassing individual work zones, their immediate surroundings, the impacted corridor, 6 
and the broader regional road network. Furthermore, the robust data capabilities will also facilitate more 7 
in-depth categorization based on different types of work zones and specific geographical regions. This 8 
enhanced categorization will provide us with an understanding of the diverse impacts and dynamics across 9 
various work zone scenarios and geographic contexts. 10 

 11 

2.2 Data Integration and Space-Time Traffic Image Generation 12 
The integration of these datasets employs a sophisticated spatial-temporal matching process. As 13 

illustrated in Fig. 2, this map highlights the geospatial alignment of work zones, loop detectors, and road 14 

 

Fig 2. Spatial distribution of work zone, detectors, and road segments in Maryland 

transportation network 

 
Fig 1. Multi-context data integration pipeline 
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segments throughout the Maryland transportation network. Initially, matching is conducted using precise 1 
GPS coordinates to ensure each work zone is accurately paired with its corresponding road segment. 2 
Subsequently, traffic data of road segments and loop detectors relevant to the operational hours of each 3 
work zone are extracted. This dual-layered matching strategy — first spatial, then temporal — ensures a 4 
seamless amalgamation of location and time-specific traffic patterns. 5 

To be specific, after cleaning and filtering, a total of 3646 work zones were identified from 2016 6 
to 2019, excluding 2020 to 2022 due to the biased traffic patterns during the COVID-19 pandemic. The 7 
study focuses on temporary work zones with durations of less than 24 hours. To capture pertinent data for 8 
temporal work zone study and enable the development of an AI model, our approach is to compile data on 9 
a case-by-case basis for each work zone. For every individual case, we systematically collect traffic data 10 
encompassing the complete duration of the work zone event. In terms of spatial information, we include 11 
data for road segments extending 5 miles upstream relative to each work zone. Based on this spatial 12 
matching result, a feature of “distance to work zone” is calculated for each road segment; similarly, “time 13 
to work zone start” and “time after work zone end” are calculated for each time step. To ensure a high level 14 
of data fidelity, we maintain a time resolution of 15 minutes throughout the dataset. 15 

As a result, for each work zone case, as shown in Fig. 3 (a), a 2D space-time matrix containing 16 
spatial-temporal information is organized, with the highlighted area indicating affected traffic. This matrix 17 
can be used to further represent other traffic features such as speed, historical average speed, and historical 18 
average volume, as well as geospatial features like link length and distance to work zone link, all updated 19 
in 15-minute intervals. These 2D space-time matrices are further converted to 2D heatmap images with 20 
different colors indicating different levels of values for particular traffic features, as seen in Fig. 3 (b). This 21 
systematic organization not only captures the real-time dynamics of work zones but also furnishes a 22 
standardized dataset format from which AI models can learn the complex spatial-temporal dependencies of 23 
traffic flow in relation to work zone activities, enhancing predictive capabilities. 24 
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 1 

 2 
3 METHODOLOGY 3 
3.1  Problem Definition 4 

The methodology proposed by this paper tackles the problem of spatial-temporal traffic speed and 5 
incident likelihood prediction on road segments of planned work zone events well in advance before their 6 
implementation (e.g., days or weeks ahead). The definition of this predictive problem is presented as 7 
follows: 8 

For a planned work zone event scheduled to start at 𝑇0 and end at 𝑇𝑛 at location 𝐿 of a roadway, we 9 
define all the link segments on the same roadway within 5 miles upstream of 𝐿 as target links. Assume that 10 
for these target links, the historical average traffic sequences (e.g., traffic speed, volume) during the same 11 
time of day and day of week corresponding to the planned work zone schedules are known. Additionally, 12 
the geospatial correlations between the links (e.g., link length, link order) and the characteristics of the 13 
planned work zone event (e.g., number of closed lanes, number of total lanes, etc.) are also known. The 14 
model aims to predict two key outcomes: 1) a sequence of traffic speeds on all the target links throughout 15 
the duration of the planned work zone; and 2) the likelihood of an incident occurring on the target links 16 
during the work zone period. The spatial-temporal traffic speed output can further be used to infer other 17 
traffic impact attributes such as maximum queue length, congestion start time, and congestion duration. 18 

 19 
 20 

3.2  Model Structure 21 
(1) Model Overview 22 

As shown in Fig. 4, the model input encompasses two components, including a set of historical 23 
traffic pattern and geospatial sequences which have been converted into a multi-channel 2D space-time 24 

 
Fig 3. Work zone space-time traffic image generation: (a) 2D space-time traffic matrix; (b) Two 

examples of converted 2D space-time traffic images (work zone traffic speed and historical 

traffic speed)  
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image, and a tabular feature vector of work zone characteristics. The 2D space-time image consists of 1 
multiple channels, each representing the historical traffic pattern and geospatial correlations of the link 2 
segments within the 5-mile range upstream of the work zone. The input image, 𝑋𝑖𝑚𝑎𝑔𝑒 can be defined as: 3 

𝑋𝑖𝑚𝑎𝑔𝑒 ∈ ℝ
ℎ×𝑤×𝑐 = {𝐼1

ℎ×𝑤, 𝐼2
ℎ×𝑤 , … , 𝐼𝑐

ℎ×𝑤} (1) 4 

where ℎ refers to the height of the image, or the number of links within the work zone 5 miles 5 
range; 𝑤 refers to the width of the image, or the number of timesteps of the work zone event; 𝑐 is the number 6 
of channels of the input image, which is the number of features related to historical traffic pattern and 7 
geospatial relationships. In this study, we selected historical average speed, historical average volume, link 8 
length, and distance to work zone location as the four channels of the input image. The second input 9 
component is the feature vector of planned work zone characteristics, denoted as  10 

𝑋𝑤𝑧 ∈ ℝ
𝑛×1 = {𝑥1, 𝑥2, … , 𝑥𝑛} (2) 11 

where 𝑛 denotes the number of features of the work zone. In this study, we consider the following 12 
features: start time of day, day of week, work zone duration, number of lanes closed, number of total lanes, 13 
road type, and on-ramp/off-ramp connection.  14 

𝑌 = {𝑌𝑠𝑝𝑒𝑒𝑑 , 𝑌𝑖𝑛𝑐𝑖} (3) 15 

The output of the model, as denoted in (3), includes a predicted 2D space-time traffic speed image 16 
𝑌𝑠𝑝𝑒𝑒𝑑 ∈ 𝑅

ℎ×𝑤×1 to indicate the speed of target links within 5 miles upstream of the anticipated work zone 17 

at 15-minute intervals for the work zone duration, and a likelihood that indicates the probability of incident 18 
occurrence during the projected work zone event. The goal of the work zone traffic impact prediction is to 19 
learn a mapping function 𝑓: 𝑋 → 𝑌 that can predict the traffic speed for each timestep on each upstream 20 
link and the likelihood of incident occurrence during the work zone event. 21 

To model the work zone impact prediction problem, the AMCNN-ED model constructs 3 modules: 22 
encoder layers, attention layer, and decoder layers. The multi-context encoder extracts the spatiotemporal 23 
features from historical space-time traffic data and static work zone features from planned work zone 24 
tabular data. The extracted feature maps are combined and passed to the attention layer to weigh the 25 
importance of each part in the concatenated feature representation. Then the attention-enhanced feature 26 
vector is further sent to decoder layers with multiple transposed CNN layer and split in the output layer to 27 
generate both the 2D speed image and incident likelihood. 28 
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 1 

(2) Encoder Layers 2 
The encoder consists of two parallel modules designed to create a joint representation of historical 3 

traffic information, geospatial features, and planned work zone characteristics. As shown in Fig. 4, the 4 
image encoder module employs two convolutional neural network (CNN) layers to extract spatial-temporal 5 
dependencies in the historical traffic patterns of upstream links during the work zone period. Each 6 
convolutional layer comprises a 2-dimensional convolution layer (Conv2D), a ReLU activation layer, and 7 
a max pooling layer, which collectively extract spatial-temporal features from the preceding layer. At the 8 
end of the two CNN layers, a flattened layer converts the feature map into a 1D vector representation. 9 
Additionally, a tabular feature extraction module extracts features from work zone-related attributes and 10 
converts them into a 1D feature vector, which can then be concatenated with the feature vector extracted 11 
from the CNN layer. 12 

 13 
(3) Attention Layer 14 

As presented in Fig. 4, the proposed network uses the self-attention mechanism to weigh the 15 
importance of different parts of the feature representation from the encoder layer. The self-attention 16 
mechanism is a deep learning technique originally designed for natural language processing (NLP) tasks to 17 

 
Fig 4. Model structure of AMCNN-ED 
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improve the modeling of relationships in sequential data [18], and further implemented in other areas such 1 
as helping the model to learn which part of the feature representation is more informative for succeeding 2 
model components [19][28]. 3 

When image and tabular data features are concatenated, they form a combined feature space. This 4 
space includes both the spatial information from the images and structured information from the tabular 5 
data. However, not all features contribute equally to the task at hand. An attention mechanism is employed 6 
here to dynamically learn to focus more on those features that are more relevant, effectively learning a task-7 
specific weighting of features. By applying attention to the concatenated features, the model can highlight 8 
aspects of the data that are more informative for the specific prediction or reconstruction task. This selective 9 
focus can improve accuracy and robustness by reducing the impact of less relevant or noisy data. 10 

To compute the decoder input, First, features extracted from both the image and the tabular data 11 
are combined into a single feature vector. This combined feature vector is then transformed into three 12 
different sets of vectors [19]: queries (𝐐), keys (𝐊), and values (𝐕). These transformations are achieved 13 
through multiplication by three distinct sets of weights. The model computes scores by comparing all the 14 
queries with all the keys. These scores determine how much attention or importance should be given to 15 
each value vector. Each value vector is then multiplied by its corresponding attention score, effectively 16 
emphasizing more important features and diminishing less important ones. The resulting weighted sum 17 
forms a new, attention-enhanced feature vector that is used as the input for the decoder. The process of 18 
implementing the self-attention mechanism on the encoded input feature can be expressed by the following 19 
equations: 20 

{
 
 

 
 [𝐐, 𝐊, 𝐕] = [𝐖𝐐,𝐖𝐊,𝐖𝐕] ∙ 𝑥

𝐀 = softmax (
𝐐 ∙ 𝐊𝑇

√𝑑𝑘
)

𝐳 = 𝐀𝐕

(4) 21 

where 𝑥  is the concatenated input feature vector from the encoder layer, 𝐖𝐐,𝐖𝐊, and 𝐖𝐕  are 22 

weight matrices, √𝑑𝑘 is a scaling factor, and 𝐳 is the output feature vector after applying self-attention. 23 

 24 
(4) Decoder Layers 25 

The decoder layer of this network consists of two transposed convolution layers for image 26 
reconstruction and a set of fully connected layers for incident likelihood prediction. The transposed 27 
convolution layers, denoted as DeCNN, are used to reconstruct the encoded feature vector to produce a 2D 28 
image for speed prediction. 29 

The decoder receives an attention-enhanced feature vector from the attention layer. Then, the first 30 
DeCNN layer takes the flattened feature vector from the previous layer and reshapes it back into a multi-31 
dimensional tensor. It then applies transposed convolution operations to start upsampling the features back 32 
to the spatial dimensions needed for image reconstruction. Following the initial upsampling, the second 33 
DeCNN layer further increases the spatial dimensions of the feature map, continuing to add detail and 34 
structure. It reduces the number of channels, aiming to reconstruct the spatial structure of the original input 35 
image. After each transposed convolution, an activation function such as ReLU is applied to introduce non-36 
linearity, helping to model complex patterns in the data. 37 

Following two consecutive DeCNN layers, the image output path employs a sigmoid activation to 38 
normalize the image pixels for the one-channel speed graph. On the classification output side, the attention-39 
enhanced feature vector is sent to a set of fully connected layers with a softmax activation function at the 40 
end to output a probability between 0 and 1, indicating the likelihood of the input belonging to one of two 41 
incident labels. 42 

 43 
3.3  Loss Function 44 

Given that the model adopts a multi-tasking learning structure and outputs two types of outputs, 45 
i.e., 2D space-time traffic speed image and incident likelihood, we employ distinct loss functions for each 46 
target output and combine them to represent the model's overall loss.  47 
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For the traffic speed prediction, we implement the widely used Huber loss function to mitigate the 1 
impact of outliers in speed predictions [25]. The definition of Huber loss is provided in (5), where 𝑦 and 𝑦̂ 2 
refer to observed and predicted speeds, respectively, and 𝛿 is a hyperparameter that requires tuning. 3 

𝐿𝛿(𝑦, 𝑦̂) = {

1

2
(𝑦 − 𝑦̂)2          for |𝑦 − 𝑦̂| ≤ 𝛿,

𝛿|𝑦 − 𝑦̂| −
1

2
𝛿2          otherwise.

(5) 4 

For incident prediction, we employ cross-entropy loss, commonly used in classification problems 5 
[10], denoted as 𝐿𝑐𝑒. This loss function measures the performance of the classification output, which is a 6 
probability value between 0 and 1. The total loss can be expressed as the weighted sum of the losses from 7 
the two tasks: 8 

𝐿 = 𝑤1 ∙ 𝐿𝛿 + 𝑤2 ∙ 𝐿𝑐𝑒 (6) 9 
where weights 𝑤1 and 𝑤2 are hyperparameters to be tuned during model training. 10 

 11 
4 EXPERIMENTATION 12 
4.1  Performance Metrics 13 

The experimentation adopts three widely applied evaluation metrics to quantify the performance of 14 
speed prediction of each model [18][17][32]. They are Mean Square Error (MSE), Root Mean Square Error 15 
(RMSE), and Mean Absolute Percentage Error (MAPE). The performance metrics are presented in (5), 16 
where 𝑦̂𝑖 represents the predicted speed made by the model, 𝑦𝑖represents the corresponding ground-truth 17 
value.  18 

{
 
 
 
 

 
 
 
 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦̂𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦̂𝑖 − 𝑦𝑖|

𝑁

𝑖=1

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦̂𝑖 − 𝑦𝑖|

𝑦𝑖

𝑁

𝑖=1

(7) 19 

Regarding incident prediction, we adopted three commonly used classification prediction metrics, 20 
recall, precision, and F1 score to assess each model’s performance [30]. Recall measures the proportion of 21 
actual positives correctly identified by the model, highlighting its sensitivity. Precision assesses the 22 
accuracy of the positive predictions made by the model, indicating the proportion of true positives among 23 
all positive predictions. F1 score is the harmonic mean of precision and recall, providing a single metric 24 
that balances both the precision and the recall to measure a model's accuracy more comprehensively. 25 
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For work zone samples exhibiting congestion patterns, we introduced three congestion-specific 1 
metrics to evaluate the prediction performance: the start time, duration, and maximum queue length of the 2 
congestion, where the duration and queue length are the width and depth of the congestion area on the 3 
space-time speed image. For each 2D space-time image corresponding to a work zone, to minimize the 4 
interference of random data noise, we only consider congestion that last over one hour and extend across 5 
multiple consecutive link segments as valid. To identify valid congestion areas in the space-time images, 6 
we employed Otsu's method, an automated process used widely in image segmentation, as demonstrated in 7 
Fig. 5. Otsu's thresholding algorithm, a popular technique in image processing, is particularly effective for 8 
automatically performing clustering-based image thresholding [13]. The method operates by calculating 9 
the histogram of the pixel intensities and systematically testing all possible thresholds to determine which 10 
maximizes the between-class variance (i.e., the variance between the pixel intensities above and below the 11 
threshold) [14]. 12 

 13 
4.2  Baseline Models 14 

The results of our model are compared against the following models: 15 
• ARIMA: Auto-regressive integrated moving average. 16 
• GRU: Gated recurrent unit network 17 
• LSTM: Long-short-term memory network 18 
• Conv-LSTM: Convolutional long-short-term memory network 19 
The first four models—ARIMA [26], GRU [27], LSTM [27], and Conv-LSTM [23]—all make 20 

speed predictions in an autoregressive form. They require a short initial sequence as input to predict the 21 
very first timestep during the work zone. They then gradually append the newly predicted speed values to 22 
the input sequence and use the extended sequence to predict the next timestep until the entire duration of 23 
the work zone is predicted. The MCNN-ED model uses the same encoder-decoder structure as the 24 
AMCNN-ED proposed by this study, the only difference being that MCNN-ED does not incorporate a self-25 
attention layer to enhance the feature representation. It should be noted that there aren’t any existing models 26 
that can be applied directly for the problem defined in this study, therefore the baseline models listed here 27 
are highly customized to fit the work zone prediction scenario in this paper, the literature cited here only 28 
provided high-level concepts instead of complete model structures. 29 

All neural network models were implemented using Pytorch 2.0. Each model was trained on a RTX 30 
A5000 GPU, providing ample GPU memory to facilitate the learning process. Additionally, the Adam 31 
optimizer was employed. The models were run for 200 epochs. Early stopping was implemented to prevent 32 
overfitting, halting the training process if the validation loss deteriorated for a specified number of epochs, 33 
even if the training loss continued to decrease. 34 

 

Fig 5. Work zone space-time traffic image processing 
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 1 
5 RESULTS AND PERFORMANCE EVALUATION 2 
5.1 System-Level Performance Analysis 3 

Table 1, 2, and 3 present the prediction results of the proposed model and baseline models on the 4 
testing dataset for the 547 work zone events. Table 1 displays the results on all test work zones, while Table 5 
2 focuses on results on congested areas of impacted work zones. The results in Table 1 demonstrate that 6 
the neural network-based models all outperform the ARIMA model. This is because ARIMA relies solely 7 
on previous timesteps’ traffic data and fails to account for changes in traffic caused by work zone activities. 8 
Additionally, the results indicate that RNN-based autoregressive models do not perform as well as encoder-9 
decoder structures, due to their inability to capture the comprehensive spatial-temporal dependencies 10 
between work zone properties and traffic patterns. Among the two encoder-decoder models, AMCNN-ED 11 
outperforms MCNN-ED. This superior performance can be attributed to the self-attention layer in 12 
AMCNN-ED, which enhances the model's ability to discern the relative importance of different sectors in 13 
the joint feature representations produced by the encoder layers. 14 

From the perspective of in-advance traffic management and long-term work zone planning, 15 
accurately forecasting the road segments impacted by work zone activities is of paramount importance. 16 
Therefore, we selected 50 work zone samples that experienced congestion during the work zone duration 17 
from a total of 547 test work zones to compare the performance between our model and baseline models. 18 
The ARIMA model, unable to predict traffic congestion caused by work zone activities, was excluded from 19 
the analysis in Table 2. 20 

As shown in Table 2, compared to RNN-based autoregressive models, the two encoder-decoder 21 
approaches demonstrate substantial improvements. This suggests that multi-context convolutional feature 22 

TABLE 1. TRAFFIC SPEED PREDICTION RESULTS 

Model 

Performance metrics 

MAE 

(mi/h) 

RMSE 

(mi/h) 

MAPE 

(%) 

Auto-

Regression 

ARIMA  10.83 12.11 17.72 

GRU  8.14 8.63 14.65 

LSTM  7.99 8.61 14.53 

Conv-LSTM  7.59 8.46 13.83 

Encoder-

Decoder 

MCNN-ED 7.36 8.30 13.77 

AMCNN-ED 7.10 8.06 13.16 
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extraction is more effective at capturing the spatial-temporal correlations across multiple adjacent locations 1 
over extended periods. This capability is particularly crucial for predicting non-recurrent congestion 2 
patterns during work zone events. Furthermore, the AMCNN-ED structure outperforms the CNN-ED 3 
structure, primarily due to its self-attention mechanism, which enables the model to identify key elements 4 
in the feature vectors from both the static work zone features and the historical spatial-temporal traffic 5 
patterns, thus more accurately predicting the occurrence of traffic congestion. 6 

Table 3 presents the prediction results for collision incidents during work zone events. We excluded 7 
ARIMA from the model list since it is designed solely for time-series prediction and cannot provide 8 
classification outputs. The results show that the AMCNN-ED model outperforms the baseline model across 9 
all three performance metrics. This suggests that the AMCNN-ED model is more effective at predicting 10 
potential collision incidents compared to autoregressive models and non-attention-based encoder-decoder 11 
models, while also minimizing false alarms in work zones. It should be noted that the prediction accuracy 12 
of all the listed models remains below 0.7. This limitation is largely due to the stochastic nature of incidents 13 
and the current limitations of available data. According to various studies [15][16][30], the occurrence of 14 
collisions is influenced by numerous factors, including traffic, road closures, and external conditions such 15 
as weather, driver behavior, and vehicle conditions. Therefore, it is challenging to achieve precise forecasts 16 
for incident occurrences based solely on historical traffic data and projected work zone properties. 17 
However, the results demonstrated by this model still show promising potential to assist in the prevention 18 
of potential crashes during the planning of work zone activities. 19 

TABLE 2. TRAFFIC CONGESTION PREDICTION RESULTS 

Model 

RMSE 

Congestion 

Start Time 

(hour) 

Congestion 

Duration 

(hour) 

Max Queue 

Length 

(mile) 

Auto-

Regression 

GRU  2.32 2.97 1.53 

LSTM  2.24 2.99 1.45 

ConvLSTM  2.18 2.88 1.36 

Encoder-

Decoder 

MCNN-ED 2.03 2.65 1.22 

AMCNN-ED 1.92 2.53 1.09 

 

TABLE 3. INCIDENT PREDICTION RESULTS 

Model 
Performance metrics 

Recall Precision F1 Score 

Auto-Regression 

GRU  0.54 0.62 0.58 

LSTM  0.53 0.61 0.57 

ConvLSTM  0.54 0.62 0.58 

Encoder-

Decoder 

MCNN-ED 0.56 0.62 0.58 

AMCNN-ED 0.58 0.65 0.61 
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 1 
5.2 Event-Level Spatial-Temporal Performance Analysis 2 

In this section, we focus on the model performance of selected examples from test dataset to 3 
illustrate the prediction performance of the proposed AMCNN-ED model and compare it with the best-4 
performing baseline model at the event level in Fig. 6. Each plot in Fig. 6 represents a 2D space-time speed 5 
difference graph for the duration of each work zone. In Fig. 6, the ground truth speed graph is displayed in 6 
the left column, the prediction results from AMCNN-ED are in the middle column, and the results from the 7 
best-performing autoregressive model (Conv-LSTM) are in the right column. The dark blue areas indicate 8 
significant speed drops compared to the historical average speed at the same time of day, signaling severe 9 
congestion, while the yellow areas indicate speeds similar to the historical average. As shown in Fig. 6, the 10 
four work zones caused one or more instances of congestion during the work zone period, extending to 11 
multiple link segments upstream. The AMCNN-ED model more accurately captures the timing and spatial 12 
extent of the congestion compared to the autoregressive model. In contrast, the Conv-LSTM model tends 13 
to underpredict or overpredict the congestion area. A key insight from this comparison is that autoregressive 14 
models may incorrectly interpret traffic flow's temporal variations. This occurs because they predict each 15 
timestep based solely on previous timesteps, ignoring shockwave propagation. In contrast, the AMCNN-16 
ED model incorporates global information, both temporally and spatially, for the work zone event. This 17 
underscores the benefits of using an attention-based encoder-decoder structure over an autoregressive 18 
structure for predicting traffic patterns during planned work zone activities. 19 

 
Fig 6. Examples of event-level speed prediction performance 
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 1 
6 CONCLUSIONS 2 

This paper presents a data curation pipeline for data-centric work zone traffic prediction problems 3 
and proposes an attention-based multi-context encoder-decoder convolutional model to predict the traffic 4 
impact of planned work zone events.  Our method consists of two main steps. First, we integrated archived 5 
data from multiple data platforms to construct a curated work zone traffic dataset that encompasses the 6 
essential factors influencing traffic changes and work zone characteristics. Next, we developed a 7 
convolutional encoder-decoder model to create a joint representation of multi-context spatial-temporal 8 
input features and implemented a self-attention mechanism to highlight key sectors within the encoded 9 
features. These features are then reconstructed through the transposed convolutional decoder layers to 10 
generate predictions for traffic speed and incident likelihood during the work zone events. The model, 11 
evaluated using four years of archived traffic data from Maryland, reduces the prediction error of traffic 12 
speed by 5% to 34%, queue length by 11% to 29%, congestion timing by 6% to 17%, and increases the 13 
accuracy of incident predictions by 5% to 7% compared to baseline models. Future research could extend 14 
the algorithm's application to other regions and assess its potential to enhance prediction performance for 15 
other non-recurrent traffic conditions. 16 
 17 

 18 
AUTHORSHIP CONTRIBUTION STATEMENT: 19 

The authors confirm their contribution to the paper as follows: study conception and design: Jiaqi 20 
Ma, Qinhua Jiang, Xishun Liao; data collection: Qinhua Jiang, Yaofa Gong; analysis and interpretation of 21 
results: Qinhua Jiang, Xishun Liao; draft manuscript preparation: Qinhua Jiang, Xishun Liao. All authors 22 
reviewed the results and approved the final version of the manuscript. 23 
 24 
  25 



REFERENCES 

[1] "Making Work Zones Work Better," Federal Highway Administration (FHWA), 2004. [Online]. 

Available: https://ops.fhwa.dot.gov/aboutus/one_pagers/wz.htm 

[2] "FHWA Work Zone Facts and Statistics," Federal Highway Administration (FHWA), 2024. [Online]. 

Available: https://ops.fhwa.dot.gov/wz/resources/facts_stats.htm 

[3] "Using Modeling and Simulation Tools for Work Zone Analysis," Federal Highway Administration 

(FHWA), 2009. [Online]. Available: https://ops.fhwa.dot.gov/wz/traffic_analysis/wza_leaflet/ 

[4] W. v Ping and K. Zhu, "Evaluation of work zone capacity estimation models: A computer simulation 

study," In Sixth Asia-Pacific Transportation Development Conference, 19th ICTPA Annual Meeting. 

2006. 

[5] P. Chatterjee, P. Edara, S. Menneni, and C. Sun, "Replication of work zone capacity values in a 

simulation model," Transportation Research Record, vol. 2130, no. 1, pp. 138–148, 2009. 

[6] X. Wen, "A work zone simulation model for travel time prediction in a connected vehicle environment," 

arXiv preprint arXiv:1801.07579, 2018. 

[7] H. Adeli and X. Jiang, "Neuro-fuzzy logic model for freeway work zone capacity estimation," Journal 

of Transportation Engineering, vol. 129, no. 5, pp. 484–493, 2003. 

[8] Karim and H. Adeli, "Radial basis function neural network for work zone capacity and queue 

estimation," Journal of Transportation Engineering, vol. 129, no. 5, pp. 494–503, 2003. 

[9] Y. Hou, P. Edara, and C. Sun, "Traffic flow forecasting for urban work zones," IEEE Transactions on 

Intelligent Transportation Systems, vol. 16, no. 4, pp. 1761–1770, 2014. 

[10] Bae, J., K. Choi, and J. H. Oh, "Multicontextual Machine Learning Approach to Modeling Traffic 

Impact of Urban Highway Work Zones," Transportation Research Record: Journal of the 

Transportation Research Board, 2017, 2645: 184–194. 

[11] "Work Zone Data Exchange (WZDx)," Federal Highway Administration (FHWA), 2022. [Online]. 

Available: https://ops.fhwa.dot.gov/wz/wzdx/index.htm 

[12] "RITIS: The Regional Integrated Transportation Information System," The Center for Advanced 

Transportation Technology (CATT) Lab, 2024. [Online]. Available: https://www.cattlab.umd.edu/ritis/ 

[13] S. L. Bangare, A. Dubal, P. S. Bangare, and S. Patil, "Reviewing Otsu’s method for image 

thresholding," International Journal of Applied Engineering Research, vol. 10, no. 9, pp. 21777-21783, 

2015. 

[14] X. Liao, G. Wu, L. Yang, and M. J. Barth, "A real-world data-driven approach for estimating 

environmental impacts of traffic accidents," Transportation Research Part D: Transport and 

Environment, vol. 117, p. 103664, 2023. 

[15] Q. Meng and J. Weng, "Evaluation of rear-end crash risk at work zone using work zone traffic data," 

Accident Analysis & Prevention, vol. 43, no. 4, pp. 1291-1300, 2011. 

[16] S. Mokhtarimousavi, J. C. Anderson, A. Azizinamini, and M. Hadi, "Improved support vector machine 

models for work zone crash injury severity prediction and analysis," Transportation Research Record, 

vol. 2673, no. 11, pp. 680-692, 2019. 

[17] Q. Jiang, B. Schroeder, J. Ma, L. Rodegerdts, B. Cesme, A. Bibeka, and A. Morgan, "Developing 

Highway Capacity Manual capacity adjustment factors for connected and automated traffic on 

roundabouts," Journal of Transportation Engineering, Part A: Systems, vol. 148, no. 5, 04022014, 

2022. 

[18] A. Abdelraouf, M. Abdel-Aty, and J. Yuan, "Utilizing attention-based multi-encoder-decoder neural 

networks for freeway traffic speed prediction," IEEE Transactions on Intelligent Transportation 

Systems, vol. 23, no. 8, pp. 11960-11969, 2021.  

[19] S. Zhang, C. Zhang, S. Zhang and J. J. Q. Yu, "Attention-Driven Recurrent Imputation for Traffic 

Speed," in IEEE Open Journal of Intelligent Transportation Systems, vol. 3, pp. 723-737, 2022 

[20] X. Yin, G. Wu, J. Wei, Y. Shen, H. Qi, and B. Yin, "Deep learning on traffic prediction: Methods, 

analysis, and future directions," IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 

6, pp. 4927-4943, 2021. 



Jiang, Liao, Gong, and Ma  

18 
 

[21] M. Akhtar and S. Moridpour, "A review of traffic congestion prediction using artificial intelligence," 

Journal of Advanced Transportation, 2021, pp. 1-18. 

[22] M. Zhong, J. Kim and Z. Zheng, "Estimating Link Flows in Road Networks With Synthetic Trajectory 

Data Generation: Inverse Reinforcement Learning Approach," in IEEE Open Journal of Intelligent 

Transportation Systems, vol. 4, pp. 14-29, 2023 

[23] N. Ranjan, S. Bhandari, H. P. Zhao, H. Kim, and P. Khan, "City-wide traffic congestion prediction 

based on CNN, LSTM and transpose CNN," IEEE Access, vol. 8, pp. 81606-81620, 2020. 

[24] D. Jo, B. Yu, H. Jeon, and K. Sohn, "Image-to-image learning to predict traffic speeds by considering 

area-wide spatio-temporal dependencies," IEEE Transactions on Vehicular Technology, vol. 68, no. 2, 

pp. 1188-1197, 2018. 

[25] M. Tang, X. Fu, H. Wu, Q. Huang, and Q. Zhao, "Traffic flow anomaly detection based on robust ridge 

regression with particle swarm optimization algorithm," Mathematical Problems in Engineering, 2020, 

pp. 1-10. 

[26] B. Dissanayake, O. Hemachandra, N. Lakshitha, D. Haputhanthri, and A. Wijayasiri, "A comparison 

of ARIMAX, VAR and LSTM on multivariate short-term traffic volume forecasting," in Conference 

of Open Innovations Association, FRUCT, no. 28, pp. 564-570, FRUCT Oy, 2021. 

[27] R. Fu, Z. Zhang, and L. Li, "Using LSTM and GRU neural network methods for traffic flow prediction," 

in 2016 31st Youth academic annual conference of Chinese association of automation (YAC), pp. 324-

328, IEEE, Nov. 2016. 

[28] Z. Wang, J. Guo, Z. Hu, H. Zhang, J. Zhang and J. Pu, "Lane Transformer: A High-Efficiency 

Trajectory Prediction Model," in IEEE Open Journal of Intelligent Transportation Systems, vol. 4, pp. 

2-13, 2023, 

[29] J. Desai, B. Scholer, J. K. Mathew, H. Li and D. M. Bullock, "Analysis of Route Choice During Planned 

and Unplanned Road Closures," in IEEE Open Journal of Intelligent Transportation Systems, vol. 3, 

pp. 489-502, 2022 

[30] M. Emu, F. B. Kamal, S. Choudhury and Q. A. Rahman, "Fatality Prediction for Motor Vehicle 

Collisions: Mining Big Data Using Deep Learning and Ensemble Methods," in IEEE Open Journal of 

Intelligent Transportation Systems, vol. 3, pp. 199-209, 2022 

[31] Papa, I. Cardei and M. Cardei, "Generalized Path Planning for UTM Systems With a Space-Time 

Graph," in IEEE Open Journal of Intelligent Transportation Systems, vol. 3, pp. 351-368, 2022 

[32] Q. Jiang, D. Nian, Y. Guo, M. Ahmed, G. Yang, and J. Ma, "Evaluating connected vehicle-based 

weather responsive management strategies using weather-sensitive microscopic simulation," Journal 

of Intelligent Transportation Systems, vol. 27, no. 1, pp. 92-110, 2023. 

 

 

 

 

  


