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Abstract
Modeling, prediction, and evaluation of personalized driving behaviors are crucial to emerging 
advanced driver-assistance systems (ADAS) that require a large amount of customized driving data. 
However, collecting such type of data from the real world could be very costly and sometimes 
unrealistic. To address this need, several high-definition game engine-based simulators have been 
developed. Furthermore, the computational load for cooperative automated driving systems (CADS) 
with a decent size may be much beyond the capability of a standalone (edge) computer. To address 
all these concerns, in this study we develop a co-simulation platform integrating Unity, Simulation 
of Urban MObility (SUMO), and Amazon Web Services (AWS), where Unity provides realistic driving 
experience and simulates on-board sensors; SUMO models realistic traffic dynamics; and AWS 
provides serverless cloud computing power and personalized data storage. To evaluate this platform, 
we select cooperative on-ramp merging in mixed traffic as a study case, and establish human-in-
the-loop (HuiL) simulations. The results show that our proposed platform can facilitate data collection 
and performance assessment for modeling personalized behaviors and interactions in CADS under 
various traffic scenarios.

This article is part of a Special Issue on Emerging Simulation Tools and Technologies for Testing and Evaluating 
Connected and Automated Vehicles: Part 1.
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Introduction

Nowadays, driving behavior has various impacts on 
the driving assistant system [1]. Based on the person-
alized driving behavior model, advanced driver-

assistant systems (ADAS) can give a better suggestion to the 
target human driver. To model the personalized driving 
behavior, a large amount of driving data is needed. However, 
collecting such customized and large datasets from the real-
world may result in significant time and labor costs, and some-
times may be implausible. Therefore, seeking a cost-effective 
solution such as a well-designed simulation platform, has been 
receiving more and more attention.

To address the above needs, several game engine-based 
simulators, such as CARLA [2] and SVL [3], have been devel-
oped for evaluating autonomous driving system (ADS). 
Specifically, SVL is based on the Unity game engine, which 
provides sensor information and allows human interaction. 
Although game engine-based simulators can leverage their 
high-fidelity visualization and delicate modeling capability 
for on-board sensing, the dynamic traffic environment may 
not be realistic [4].

On the other hand, legacy vehicles and connected and 
automated vehicles (CAVs) are considered having to share the 
roads during the transition period, which may span several 
decades. The interactions between them may introduce new 
challenges to the transportation systems in terms of safety 
risks, efficiency degradation, and flow instability. To evaluate 
the performance and effects of ADS in mixed traffic, a realistic 
traffic environment model is required. Microscopic traffic 
simulators including VISSIM, Aimsun, and Simulation of 
Urban MObility (SUMO) can not only generate realistic traffic 
flows, but also provide well-calibrated car-following and lane-
changing behaviors.

Furthermore, computational loads for high-fidelity 
modeling of CAVs may be overwhelming if only a single 
personal computer is used to handle the entire simulation 
scenario. To guarantee the system scalability, it is appropriate 
to leverage the power of “cloud” by integrating the co-simu-
lation with Amazon Web Services (AWS), which provides a 
serverless cloud computing resource and enables personalized 
data storage.

The contribution of this article is listed as follows:

•• An integrated co-simulation platform is set up to 
connect Unity, SUMO, and AWS, where vehicle models, 
traffic networks, and cloud computing are 
seamlessly integrated.

•• Human-in-the-loop (HuiL) simulation is conducted with 
an immersive interface to provide high-fidelity 
interactions between a human-controlled vehicle and 
other background traffic.

•• A scalable cloud-based platform (with AWS in this 
study) is developed, which is readily extended for 
synchronous or asynchronous multiplayer games, and 
personalized data storage and mining to enhance 
ADAS performance.

The remainder of this article is organized as follows: 
Section 2 presents background information including state-
of-the-art driving simulators, microscopic traffic simulators, 
and co-simulators, followed by the introduction of system 
architecture and key components of the proposed integrated 
platform in Section 3. Section 4 demonstrates the capability 
of our co-simulation platform via human behavior-related 
research with a cooperative on-ramp merging ADAS for 
mixed traffic. Section 5 further discusses major challenges in 
the development of co-simulation platform, and the last 
section concludes this study and gives an outlook on the future.

State of the Art

Game Engine-Based 
Simulation
Game engines, such as Unity [5] and Unreal Engine 4 (UE4) 
[6], are computer software that consist of a graphics rendering 
engine, a physical engine, and an UI interface for managing 
elements. Based on these game engines, several open-source 
simulators are built for advanced autonomous driving imple-
mentations, such as SVL based on Unity [3] and CARLA based 
on UE4 [2]. These simulators normally provide 3D visualiza-
tions of vehicles and traffic network with high rendering 
quality and realistic physics. Moreover, the on-board sensors, 
such as radar, LiDAR, camera, and GPS, can be also fully 
customized. With the integration of these sensors, physical 
models of CAV can be built. Besides, the simulation environ-
ment can be well customized, such as roadside infrastructure, 
pedestrian, buildings, and extreme weather [3]. In the research 
community, game engine-based simulation environments 
were widely used to prototype vehicle cooperation [7, 8], model 
driver behavior [9, 10], and simulate autonomous driving [11].

Microscopic Traffic Simulation
Currently, there are several microscopic simulators available 
to support the modeling and evaluation of cooperative auto-
mated driving systems (CADSs). They are able to provide 
realistic traffic environment after calibration with real-world 
data. Among them, PTV VISSIM [12], and Aimsun [13] are 
two commercial simulation tools. Specifically, VISSIM is a 
behavior-based multipurpose microscopic simulation that 
can be linked with MATLAB through a Component Object 
Model (COM) interface [12]. Aimsun [13] is a hybrid traffic 
modeling simulator, which allows simultaneous application 
of multimodel analysis with large networks. On the other 
hand, SUMO [14] is an open-source traffic simulator that can 
be used for a variety of applications, such as dynamic naviga-
tion, traffic surveillance systems evaluation, and traffic light 
algorithm development [15]. Furthermore, it is flexible enough 
to extend its capability by linking with other add-ons or simu-
lators (e.g., OMNET++ for communication simulation) [15]. 
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In addition, SUMO provides application programming inter-
faces (APIs), called Traffic Control Interface (TraCI), to facili-
tate the interaction with external applications through a 
socket (bidirectional) connection. With TraCI API, SUMO 
can be easily coupled with a network simulation, e.g., NS2 and 
NS3. Comparatively, Aimsun has a built-in vehicle commu-
nication module V2X SDK to enable network simulation [16].

Advanced Co-Simulation
Currently, each individual simulator has its own advantages 
and focus arenas. However, a single simulator is not enough 
for modeling and evaluating CADS design as well as estab-
lishing the realistic testing environment. To leverage the capa-
bilities of multiple simulators, some recent research integrated 
VISSIM with driving simulators to assess the influence of 
adverse weather on traffic flow characteristics [17]. In the 
meantime, SUMO was coupled with an open-source software 
framework, called CommonRoad [18], which can provide a 
benchmark for motion planning of automated vehicles. With 
the integration, motion planners can be  evaluated and 
compared under realistic traffic environments provided by 
SUMO [19]. In the rest of this section, two types of co-simu-
lation, i.e., HuiL and cloud-in-the-loop (CiL) will 
be introduced.

HuiL is a prototype platform for quickly exploring novel 
in-the-loop applications that can enhance the interactions 
between human beings and the physical world [20]. HuiL is 
widely used in different research topics highly related to 
human interaction with control systems. For example, in the 
work of rollover prevention for sport utility vehicles, the 
researchers validated the performance of the anti-rollover 
control via HuiL [21]. They emphasized that the reason for 
involving HuiL is that the driver’s interaction with and percep-
tion of the system performance may cause a problem and 
many safety systems are designed without such consideration. 
With HuiL, some researchers proposed a synthetic approach 
to solving safety-critical interaction problems in the SAE Level 
3 automated vehicles, which are mostly autonomous and only 
need limited driver intervention [22]. It is important to 
develop a safe and comfortable system via HuiL simulation. 
In previous study [23], researchers developed a microscopic 
driver-centric simulator by integrating Unity and SUMO. The 
simulator is based on the connection between two individual 
simulators through TraCI protocols. However, the informa-
tion of the traffic flow is transferred only in one-way direction 
(i.e., from SUMO to Unity), which means that only the 
position of legacy vehicles can be updated in Unity. As a result, 
although the simulator allowed the human driver to react to 
the background traffic, the human driving behavior cannot 
affect the traffic flow. In the paper [24], researchers created a 
mixed reality simulation environment allowing real-world 
vehicles to interact with virtual traffic flow generated by 
SUMO and to be visualized in Unity. It collected the human 
driving behavior information with real-world vehicles’ sensors 
to serve as a validation procedure for autonomous vehicle 
development. Despite this, it did not take full advantage of 

the game engine, because the mixed reality environment 
simulation ignored the virtual sensors, such as camera, radar, 
and LiDAR, which can be created in Unity via advanced 
sensor models.

CiL simulation leverages the powerful computing ability 
of a cluster of servers such as AWS for more efficient simula-
tion and modeling purposes [25]. In a recent work [26], 
researchers developed a CiL simulation testbed using AWS 
and SUMO. The study took a speed advisory application as a 
test case and showed that the cloud infrastructure can provide 
an alternative for addressing the computing needs without 
sacrificing performance and reliability. However, the testbed 
neglected human factors, a key component for the 
entire system.

Methods

Co-Simulation Platform 
Architecture
The purpose of building the platform is to create a compre-
hensive simulator for modeling and evaluating the perfor-
mance of human behavior with CADS under a mixed traffic 
scenario through the HuiL simulation. To achieve this 
purpose, there are three key components of the integrated 
platform: vehicle-human interfacing, traffic modeling, and 
cloud computing. To implement these components, we select 
a game engine, a microscopic simulator, and AWS as the 
respective solution, where (1) game engine is suitable for 
modeling and visualizing the surrounding environment of 
ego vehicle, and providing high-fidelity (on-board) sensor 
information; (2) microscopic simulator provides realistic 
traffic flow under various congestion levels and penetration 
rates of CAVs; and (3) AWS can store the data from each simu-
lator, provide computation power for time-consuming algo-
rithm, and archive personalized driving data for 
further investigation.

We select Unity as a solution for game engine due to its 
following advantages:

	 1.	 Visualization: Unity is capable of handling the trade-
off between the realism of the vehicular dynamics and 
the computation load of the physics.

	 2.	 Inputs: Unity provides easy access to human 
interference device (HID), such as inputs from 
driving simulator hardware for human 
involving testing.

	 3.	 Asset store: Unity provides an Asset Store, which 
contains a library of assets created by the Unity 
Technologies and the community members. Wide-
variety convenient assets are available to developers, 
such as vehicle dynamics models and 
waypoint systems.

As for the microscopic simulator, SUMO become our 
choice for these reasons:
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	 1.	 SUMO provides APIs, called Traffic Control Interface 
(TraCI), to facilitate the interaction with external 
applications through a socket 
(bidirectional) connection.

	 2.	 SUMO also provides multiple solid microscopic 
traffic models, which are used and tested in various 
studies [9].

	 3.	 SUMO is an open-source traffic simulator, which 
provides well-organized and easy-
to-read documentation.

	 4.	 SUMO provides an active community forum 
supported by Eclipse, which is good for researchers to 
exchange ideas and get inspired.

In terms of vehicle modeling, we define two different 
controller models that are CAVs and legacy vehicles. As illus-
trated in Figure 1, CAVs with the on-board sensors modeled 
by Unity are driven by the user-defined control algorithm, 
and legacy vehicles are controlled by the SUMO default car-
following model and lane-changing model. In terms of traffic 
modeling, traffic demand can be defined in SUMO on an 
individual trip basis (e.g., specifying trip starting time and 
route) or in an aggregated manner (such as total traffic flow 
from origins) [27]. For cloud computing, AWS provides us 
enough storage space and the high-performance computation 
ability to support the training or running of advanced 
modeling algorithms, such as deep learning and reinforce-
ment learning, for modeling personalized human behaviors.

To integrate all these components, we develop a python 
script called Edge Gateway to handle the data exchange and 
information synchronization. As shown in Figure 1, each 
component can share locally processed data with others via 
the Edge Gateway. The Edge Gateway uses asynchronous 
processes to avoid simulator blocking that may introduce 
frame per second (FPS) drops. There are several User 
Datagram Protocol (UDP) server and client threads handling 
the data exchange with queues. With the Edge Gateway, FPS 
performance is improved to provide a better human driver 
experience in Unity. In addition, the Edge Gateway also 
provides the possibility to extend the entire platform for incor-
porating other simulators or even real-world vehicles.

Since the connection and information synchronization 
is critical to the integrated platform, we detail the chrono-
logical sequence of each executed component. As shown in 
Figure 2, SUMO generates vehicles based on a predefined route 
file. Keeping the route file unchanged can reproduce the same 
traffic flow. With this feature, we can easily control the envi-
ronment variables in different tests. For the first time when 
vehicles’ statuses are shared with Unity, predefined 3D prefabs 
can be created based on vehicle types selected by the vehicle 
control-type classifier. Although vehicles are initially all 
governed by SUMO, Unity may take over the control once 
some (or even all) of them are assigned to be CAVs or the 
human control vehicle (HCV). After creating vehicles in both 
simulators and determining the type of each vehicle, legacy 
vehicles will be controlled based on SUMO models and their 
information will be shared in real-time to Unity and AWS 
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 FIGURE 1  The general architecture of the proposed Unity-SUMO-AWS co-simulation platform.
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through the Edge Gateway. Then, Unity will update the corre-
sponding vehicles’ statuses. Likewise, the Unity-controlled 
vehicles, including HCV and CAVs, will share their states, 
such as velocities and positions to SUMO, to ensure statuses 
of the corresponding vehicles on different simulators are 
synchronized. In the meantime, AWS processes the informa-
tion collected from both SUMO and Unity to provide the 
required services.

Key Components within the 
System Architecture

Vehicle Modeling To create a realistic mixed traffic flow 
for CADS designing through the HuiL simulation, we define 
three general vehicle types participating in the simulation, 
which are legacy vehicle, CAV, and HCV. At the simulator 
level, they can also be  classified into two types: Unity- and 
SUMO-controlled vehicles. Unity-controlled vehicles include 
CAVs and HCV.

Specifically, the legacy vehicle is totally controlled by 
SUMO via car-following and lane-changing model. SUMO 
can deploy these legacy vehicles based on a predefined route 
file and remove them when they reach the end of the trip. In 
terms of CAVs, they are controlled by user-defined algorithm 
coding in Unity. The control algorithm can be coded with 
intelligent driver model (IDM) [35] or other advanced  
(data-driven) algorithms. In addition, the on-board sensors 

(e.g., camera, radar, LiDAR, GPS) equipped on CAVs can 
provide realistic data formats such as point clouds and images.

As a key player in the HuiL simulation, we create the HCV 
model in Unity via Vehicle Control script to simulate high-
fidelity vehicular dynamics, enabling the driver-vehicle inter-
face. The script is defined in the Vehicle Physics Pro (VPP), 
which is an advanced vehicle simulation kit for Unity that 
supports efficient, realistic, and accurate vehicle simulation. 
Moreover, multiple sensors that can be defined by users are 
equipped with the model. The HCV model has two side 
mirrors and one rearview mirror, as shown in Figure 3, 
providing a realistic driving experience for CADS evaluation. 
To involve more realistic human maneuvers such as the pedal 
and steering wheel control, Logitech gaming steering wheel 
and pedal are set as the input interface of the simulation.

Simulation Environment Construction Taking 
advantage of the game engine, we construct a high-quality 
simulation environment in Unity including the network, 
infrastructure, and buildings based on a real-world map. In 
addition, to facilitate the lateral and longitudinal control of 
CAVs, we create a set of waypoints for each lane in the network.

In general, there are two ways to construct the simulation 
environment in both Unity and SUMO:

	 1.	 SUMO provides a tool called NETCONVERT, which 
can convert the OpenStreetMap (OSM) file into a 2D 
SUMO network file. Once we have the 2D map, 
we can build the 3D map in Unity accordingly.

SUMOAWS Unity

Deploy vehicles into SUMO

Send vehicle status to Unity

Createvehicles in Unity
Assign vehicles type

Update legacy vehicle status

Send vehicle status to AWS

Cloud computing

Send computing result to SUMO & Unity

Update Connected and Automated 
Vehicles and Human Controlled 

Vehicles status

Connected and Automated 
Vehiclescontrolled by user 

defined algorithm

Human Controlled 
Vehiclescontrolled by 

human driver
Send vehicle status to SUMO & AWS
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 FIGURE 2  Sequence diagram for information synchronization.
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	 2.	 According to the 3D network in Unity, we create the 
same 2D map in SUMO, ensuring two maps to have 
the same reference point for position synchronization 
between two simulators.

Typically, the second approach is more laborious than 
the first one, however OSM does not always provide high-
quality map compared to the real world, which may affect the 
fidelity of simulation. In this article, we also choose the second 
method as we note that the OSM model of study area could 
not well reflect the real-world network geometry and situations.

Traffic Flow Generation To generate a realistic traffic 
flow, we apply the Poisson distribution. We assume the depar-
ture of vehicle follows a Poisson process, which means that 
given a random period T, the probability of the time interval 
between two departures is larger than T can be calculated 
as follows:

	 P T t e t�� � � � �1 � 	 Eq. (1)

where λ represents the departure rate within a period time. 
Based on this model, the time interval between departures 
is exponentially distributed and can be  calculated as 
follows:

	 t
T

�
�� �

�
log 1

�
	 Eq. (2)

where α represents the traffic volume in vehicle per hour.
According to the equation, we can assign departure time 

for each vehicle and save them as a route file containing each 
individual vehicle’s properties, such as vehicle ID, departure 
time, and the predefined route. SUMO can spawn vehicles 
based on this route file and Unity can create vehicles with the 
same properties after the first time it receives their informa-
tion from SUMO. Once creating vehicles in Unity, the platform 
may determine if each individual vehicle is a CAV, legacy 
vehicle, or the HCV based on the logic described in the 
following section.

Vehicle Control-Type Classifier To assign the role for 
each vehicle, we  create a vehicle control-type classifier  

(see Figure 1), which can select a vehicle to be a CAV or a 
legacy vehicle based on a random number generator. It uses 
the vehicle ID as a seed number to generate a random number 
between 0 and 1. Compare the random number p and a 
predefined threshold P that represents the penetration rate:

	 Vehicle type
CAV

Legacy vehicle
�

�
�

�
�
�

,

,

p P

p P
	 Eq. (3)

Besides this, the HCV is selected by a predefined vehicle 
ID. At the first time Unity receives the HCV ID from SUMO, 
the HCV prefab is deployed in Unity with the same position 
and velocity as SUMO.

Traffic Flow Terminator The traffic flow terminator 
mainly fulfills two functions: (a) to remove vehicles that 
already finished their trips and (b) to remove vehicles that are 
not synchronized in both simulators.

With the traffic flow generation, we can spawn vehicles 
and have them driven in both SUMO and Unity. After vehicles 
finish their trips or reach the end of their destinations, SUMO 
can automatically remove those SUMO-controlled vehicles. 
Similarly, Unity is able to delete those vehicles controlled by 
Unity after they reach their last waypoints.

However, whenever a simulator removes a vehicle in its 
local side, the other simulator may not remove the same 
vehicle simultaneously. To resolve the problem, we check the 
vehicle ID list sent from the other simulator every time step, 
compare it with the vehicle ID list in the target simulator, and 
then remove those vehicles that only show up in one of 
the simulations.

Cloud Computing and Personalized Profile 
Storing To ensure scalability of the integrated platform, 
we take advantage of the high-speed data processing and secure 
data storing features of AWS. One previous study [28] devel-
oped a serverless cloud computing architecture with a real-
time platoon-based speed advisory algorithm using AWS and 
proved that cloud computing provided by AWS could be a 
cost-effective solution for backend data processing and storing.

 FIGURE 3  Hardware setup for HuiL in a lab environment.
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The cloud architecture consisted of three parts: AWS, 
Amazon Virtual Private Cloud (VPC) [29], and the external 
space. VPC is part of the AWS and includes the most impor-
tant modules: Real-Time Processing, Data Stores, and 
Analytics Workbench. Specifically, Amazon S3 [30], Amazon 
DocumentDB [31], and Redis [32] are used for data storing. 
Inside the AWS, except VPC, there is the AWS IoT Core [33], 
which enables the connection between AWS to IoT devices 
(Edge Gateway in this study). It supports various devices and 
messages, which can be reliably and securely transmitted to 
AWS. Position, speed, and acceleration data acquired from 
simulation can be uploaded from the Edge Gateway to AWS 
IoT Core via MQTT [34].

Outside AWS, a web portal acts as a frontend for 
displaying data diagrams and showing personalized driving 
performance. All data collected by the integrated platform is 
uploaded to the cloud through the Edge Gateway via MQTT. 
In the meantime, the cloud will display the driving data, such 
as trajectory, velocity, acceleration, and gap between vehicles 
in real time. Besides, after a driving test run is over, the 
uploaded data will be stored in the cloud for playback and 
further analysis. In addition, we also create personal profile 
for each human driver and archive his or her historical trajec-
tory, speed, acceleration, and other critical information from 
multiple driving test runs. By analyzing individual user’s 
driving records, we can explore and evaluate his or her driving 
style and driving performance (e.g., risk class), and provide 
references for other serverless cloud services (e.g., personal-
ized speed advisory, personalized navigation). In addition, 
we may create personalized driving behavior model for each 
individual driver and develop the associated “digital twin” 
agent in the cloud.

Results
In this section, we implement a game theory-based CADS for 
on-ramp merging [36] in mixed traffic as a case study to 
demonstrate the application of the integrated platform, where 
personalized human behaviors are modeled and evaluated.

Simulation Environment Setup
The simulation environment consists of two main parts: the 
software part and the hardware part. In the software part, to 
evaluate the CADS for on-ramp merging scenario, we first 
create the virtual environment in Unity, as shown in Figure 
4(b), based on a real road network from the intersection of 
Chicago Avenue to the intersection of Iowa Avenue along 
Columbia Avenue in Riverside, CA [see Figure 4(a)]. Then 
according to the 3D map, we create the same 2D map, as 
shown in Figure 4(c), with NETEDIT provided by SUMO. The 
network consists of a two-lane mainline and a single-lane 
on-ramp. The simulation timestep for both simulators are set 
to be 0.02 s.

In terms of hardware setup, there are three monitors 
placed around the driver, as shown in Figure 4. The Logitech 
G27 racing steering wheel and pedal set has been placed in 
front of the middle monitor. Switching Unity gaming inputs 
from keyboard and mouse to joystick allows us to collect more 
realistic human behavior data in the integrated platform.

Mixed Traffic Modeling
Regarding the mixed traffic flow, three types of vehicles are 
modeled in the case study. The driving behavior of legacy 
vehicles is modeled by the default car-following model and 
lane-changing model in SUMO, and CAVs are fully controlled 
by the game theory-based on-ramp merging algorithm [36], 
which governs the decision-making process of both car 
following and lane changing. Besides, the HCV is controlled 
by subject driver through the steering wheel and pedal input. 
Only CAVs and the HCV are equipped with on-board LiDARs 
as described by a relatively simple model (see Figure 5). All 
vehicles created in Unity are based on real Toyota and Lexus 
models, with white, red, and blue colors representing legacy 
vehicles, CAVs, and the HCV, respectively.

Specifically, the SUMO car-following model is based on 
the Krauß model [37], and the lane-changing model is based 
on the LC2013 model [38]. The Krauß model is defined 
below [37]:

	 v t v t
g t g t

safe l
des

b

� � � � � � � � � � �
�� �

,	 Eq. (4)

    v t v v t a v t v tdes safe� � � � � � � � � ��� ���min max ,, ,� 	 Eq. (5)

	 v t t v tdes�� � � � � ��� ��� max 0, � 	 Eq. (6)

	 x t t x t v t�� � � � � �� � 	 Eq. (7)

 FIGURE 4  Network of simulation environment.
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where gdes is the desired gap, τ is the reaction time of the 
drivers, and τb is the time for deceleration. The lane-changing 
model contains four hierarchy layers based on different moti-
vations for lane-changing: strategic change, cooperative 
change, tactical change, and regulatory change [38].

A game theory-based ramp merging strategy has been 
applied to CAVs in the co-simulation. Compared with the 
baseline, the algorithm can compute the target speed and 
make the decision for lane changing. It significantly improves 
the system mobility and reduces the fuel consumption [36].

A human driver uses the steering wheel and pedal set to 
control an HCV in the Unity through the Unity-supported 
joystick input interface. We have also applied a CADS, which 
runs the same CAV algorithm that provides speed advisory 
and lane-changing instruction via the customized graphical 
user interface (GUI) presented on the windscreen [39].

Simulation Scenarios and 
Result
We verify the function and capability of the integrated 
platform, using 48 different highway on-ramp merging 
scenarios with realistic traffic flows. For the background 
traffic, we have three penetration rates of CAVs (i.e., 0%, 50%, 
and 100%) and two congestion levels (i.e., medium and heavy). 
In the case of HCV, drivers may or may not be provided with 
the suggested speed generated by the driving assistance 
system. In addition, HCV may be spawn into the network 
from the mainline or on-ramp. In the case study, two drivers 
are invited to participate in testing and 24 different scenarios 
for each driver.

As aforementioned, a predefined route file is generated 
based on the Poisson process. The background traffic is 
spawned at an initial speed of 10 m/s in the integrated simu-
lator according to the departure time of each vehicle defined 
in the route file. The human driver needs to wait until the 
HCV to be spawn. In the scenarios with driving assistance, 
once the HCV is spawn, the speed advisory and the lane-
changing guidance provided by the game theory-based ramp 

merging strategy will be displayed on the windscreen. The 
traffic demand ratio of highway to on-ramp is set to be 3:1. 
Furthermore, the total traffic flow rate for heavy and medium 
congestion level are 3200 passenger car units per hour (pcu/
hr) and 1600 (pcu/hr), respectively. The configuration of all 
three vehicle types is shown in Table 1.

Data Collection and Analysis Among 48 testing 
scenarios, we select a typical one with 50% penetration rate 
and medium congestion level to demonstrate the collection 
and archiving of data and how we can utilize them. In this 
scenario, driver 1 controls the HCV as a ramp vehicle and 
follows the instructions from ADAS to try to merge into 
the mainline.

As the simulation is running, an overview map on the 
web portal is shown in Figure 6, and all simulation vehicles 
are displayed on the map. Connected vehicles are shown as 
red vehicles and disconnected vehicles are shown as blue 
vehicles. A vehicle is set to be disconnected when it stops 
uploading its information for more than 5 minutes.

During the simulation, the information from every 
vehicle is uploaded and stored on AWS, but only the data from 
HCV is plotted on the web portal, as shown in the Figure 7(b) 
and Figure 8(b). In the following figures, we compare the HCV 
driving data (velocity and gap) uploaded to AWS and displayed 
on the web portal (online), with the data stored and processed 
locally (offline). It is noted that for AWS, the information 
uploading sample rate is 1 Hz, which may lead to slight differ-
ence between the online data and offline data. The drastic 
drop in Figure 8 is caused by lane changing.

Using the stored data, we can easily recap a trip and analyze 
driving behavior, which is useful for personalize related 
research. In Figure 9, we display the trajectory of the HCV and 
its surrounding vehicles to show the capability of collecting 
information from all vehicles. Then we use the data to evaluate 
the human behaviors via two measurements: time to collision 
(TTC) and velocity volatility. TTC is computed by [41]:

	 TTC
X t X t l

X t X t
X t X ti

i i i

i i
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� � � � � �
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�1

1

1�
� 	Eq. (8)

TABLE 1 Configuration of three vehicle types.

Vehicle type CAV
Legacy 
vehicles HCV

Car-following 
model

Game theory-
based algorithm 
[36]

Krauß Human 
driver

Lane-changing 
model

LC2013

Initial speed 10 m/s

Minimum gap 5 m

Maximum 
acceleration

4 m/s2

Minimum 
deceleration

−5 m/s2

Maximum speed 20 m/s

Length 5 m ©
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 FIGURE 5  A simple LiDAR model.
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where Xi(t) is the position of the HCV; Xi−1(t) is the position 
of its preceding vehicle; and li is the length of the HCV. The 
average TTC is 44.40 s and the lowest TTC is 3.90 s. Previous 
study [42] suggested that scenarios with TTC value larger than 
4 s can be considered as safe driving. Although the lowest 
TTC is lower than 4 s, there are only two occurrences where 
TTC is lower than 4 s. In this case, the driver is proved to have 
a safe driving behavior.

The volatility of velocity represents how fluctuating the 
velocity signal is. A steady state of the velocity is quantified 
by low velocity volatility.

	 Speed volatility
Threshold

�
�

�
c

n
100%	 Eq. (9)

	 Threshold � � �x x Sdev2 	 Eq. (10)

where c is the number of observations over the threshold and 
n is the total number of observations [43]. The volatility of the 
HCV is 1.36%, showing the velocity is relatively steady. 

According to the TTC and volatility performance, the driving 
behavior shows the driver is a safe driver. Through the example 
case study, the capability of collecting and analyzing data of 
the integrated platform is verified.

Environmental Impact on Driving Behavior In this 
section, we compare 48 defined trip scenarios in multiple 
aspects and show that the impacts of different traffic condi-
tions on driving behaviors always match our expectation.

To quantify the driving behavior, we choose a driver rank 
method proposed in [40], which can determine aggressiveness 
of a trip with a continuous number ranging from −1 to 1 
(representing the mildest behavior and the most aggressive 
behavior, respectively). In this article, aggressiveness is specific 
to describe the aggressive driving behavior, which is charac-
terized by higher speeds, shorter headways, more frequent 
lane changes, and more rapid accelerations and decelerations. 
Aggressiveness is quantified by the following terms:

	 z
x x

x x
ij

ij ij

ij ij

� �
�

�
�2 1

min

max min
	 Eq. (11)

	 Q
s

z i ri ij� � �� �
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1 2
j 1

s

, , 	 Eq. (12)

where, xij is diagnostic variables; i is the number of driving 
trips; j is the number of synthetic variables. In this article, 
standard deviation (STD) of the acceleration and STD of the 
velocity are selected as diagnostic variables. Therefore, the 
number of synthetic variables (j) is two. The rank of driver is 
determined by the average of the synthetic variables.

To determine the personalized driver’s behaviors under 
different environment settings, we first explore individual 
driver’s rank with respect to congestion level, penetration rate, 
and trip origin (i.e., mainline vs. on-ramp), and then compare 

 FIGURE 6  Overview map on the web portal 
during simulation.
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 FIGURE 7  The time-speed diagram of the HCV.
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the difference in behavior changes between two drivers due 
to the introduction of driving assistance system. In Tables 2-4, 
we only display partial results, but the observations are consis-
tent across most of the cases.

By observing the driver rank variation due to different 
penetration rates, which is shown in Table 2, we can find that 
as the penetration rate increases, almost all the driving ranks 
drop. According to the driving ranks, lower number repre-
sents drivers who have less variance in speed and acceleration. 
In this case, as the penetration rate rising, the drivers perform 
less aggressively. It matches the conclusion in previous study 
[36] that the game theory-based ADAS can help drivers of 

on-ramp vehicles to have smoother merging trips under 
higher penetration rates.

Then we evaluate the simulation results regarding the 
congestion level-impacts on driving behaviors for trips along 
different lanes (mainline vs. on-ramp). Under the large traffic 
volume, little space is left for the driver to perform aggressive 
lane changing or frequent acceleration and deceleration. In 
line with this expectation, in high-density traffic scenarios, 
the driver’s ranks are lower as shown in Table 3. Since on-ramp 
vehicles need to find suitable gaps to merge into the highway, 
operation of the throttle and brake by the driver of the ramp 
vehicle would be  frequent. Compared to the on-ramp 

HCV gap diagram

 FIGURE 8  The gap between the HCV and its preceding vehicle.
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HCV time-space diagram

Main lane vehicle 1

Main lane vehicle 2

Ramp lane vehicle 1

Ramp lane vehicle 2

 FIGURE 9  The time-space diagram of HCV and its neighboring vehicles.
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scenarios, highway mainline scenarios have milder driving 
behaviors or lower driver’s ranks as shown in Table 3.

Under the same penetration rate (e.g., 100%) and the same 
congestion level (e.g., medium), driver ranks are lower when 
ADAS is present, as shown in Table 4. It proves that drivers 
tend to be milder if they are provided with the speed guidance.

To evaluate the behavior difference between two drivers, 
we first present results without the ADAS under different condi-
tions as baseline. The average driver ranks of drivers 1 and 2 are 
−0.53 and −0.40, respectively. This means that driver 2 is more 
aggressive than driver 1 in general. Then we take the previous 
cases in Table 4 as a typical scenario to analyze the ADAS impact 
on different drivers. With the ADAS, the driver ranks drop to 
around −0.67 for both drivers, but the original driver rank of 
driver 2 is much higher than driver 1. It shows that the ADAS 
leads to larger impacts on the more aggressive driver.

With the comparison, we demonstrate the capability of 
the integrated co-simulation platform to analyze the impact 
of ADAS on driver behaviors under various traffic scenarios 
and validate that the platform can reflect the environmental 
impact of driving behavior.

Discussion
In the future development and utilization of co-simulation 
platforms, quite a few challenges need to be addressed from 

the perspectives of both research and engineering. In this 
section, we discuss the major issues that stand out among 
others during our development and implementation of 
this platform.

Asynchronous 
Communications
One of the purposes of using game engine is to create an 
immersive driving environment to obtain realistic human 
reactions. Hence, user experience and data fidelity are of high 
priority. Synchronous communication that requires strict time 
sequences for information flowing between different compo-
nents may result in dramatic drops in FPS of the game engine, 
when the number of road users (e.g., vehicles) to be modeled 
increases and the computational load gets heavier. This would 
significantly impact the user experience and real-time perfor-
mance. To mitigate this issue, we implement asynchronous 
communication technique, which can keep simulation 
running smoothly even if the computational time may 
be longer than the update interval. Nevertheless, if the compu-
tational load is too heavy or the information latency from the 
other component is high, then vehicle “jumping” (from the 
driving simulation perspective) can still be observed. In that 
case, we need to leverage the power of cloud computing, which 
will be explained in the following.

Integration with the Cloud
In SUMO, TraCI provides a lot of valuable functions for 
retrieving vehicle states (e.g., position, acceleration) and 
further calculating useful information, such as getCO2Emis-
sion and getFuelConsumption. However, running all these 
functions in a single simulation time step would significantly 
increase the computational load, thus requiring nontrivial 
computing power from the platform. By integrating AWS into 
the co-simulation and leveraging its cloud computing 
resources, we are able to transfer those time-consuming func-
tions to the cloud server and balance the resource utilization 
among components of the entire platform. Toward this end, 
we can optimize the overall simulation performance (e.g., 
modeling fidelity and information timeliness), while satisfying 
hardware and software constraints of each component.

Platform Extension
It is noted that we consider the potential extensibility of the 
platform during its development. For example, as an open-
source traffic simulator, SUMO is well compatible with 
OMNET++ for modeling a realistic connected vehicle envi-
ronment, and also provides a set of APIs to flexibly connect 
with other software and tools. On the other hand, the game 
engine, Unity, provides plug-and-play access to virtual reality 
(VR) equipment for enabling more immersive environment 
and testing scenarios with multi-modal (such as pedestrians, 
bicyclists, e-scooters) interactions. More importantly, the 

TABLE 2 Driver ranks affected by penetration rates and 
ADAS (Driver 1, Medium CL, On-ramp).

PR (%) ADAS Driver rank
0 W/ −0.51

50 W/ −0.68

100 W/ −0.69

0 W/o −0.34

50 W/o −0.47

100 W/o −0.64©
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TABLE 4 Driver ranks of different drivers affected by ADAS 
(On-ramp, Medium CL, 50% PR).

Driver ADAS Driver rank
Driver 1 W/ −0.68

Driver 1 W/o −0.48

Driver 2 W/ −0.67

Driver 2 W/o −0.33©
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TABLE 3 Driver ranks affected by different lanes and 
congestion levels (Driver 2, w/o ADAS, 100% PR).

Lane Congestion level Driver rank
On-ramp Heavy −0.34

On-ramp Medium −0.22

Mainline Heavy −0.53

Mainline Medium 0.37©
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developed data exchanging center, Edge Gateway, facilitates 
the integration with real-world vehicles and other hardware 
(e.g., ROS-enabled miniature RC cars) to build up a mixed 
reality platform. A variety of real-world driving scenarios can 
be modeled and evaluated using the integrated platform to 
address the associated research questions (especially related 
to human behaviors), such as car following on highways, eco-
driving along signalized corridors, and lane change prediction.

Conclusions and Outlook
This study proposed an integrated Unity-SUMO-AWS 
platform allowing performance evaluation of personalized 
driving behaviors with ADAS under a variety of mixed traffic 
scenarios through HuiL simulation. We showed that this 
platform is able to collect necessary information, such as real-
istic driving behaviors, detailed dynamics at the individual 
vehicle level, delicate interactions between neighboring 
vehicles, and aggregated parameters of traffic flows. The 
equipped hardware, such as steering wheel and pedals, allowed 
collecting personalized driving information (e.g., turning 
wheel angles, brake/accelerator forces). All this information 
was uploaded to AWS for archiving and behavior modeling. 
Moreover, we used cooperative ramp merging assistance as 
an example to showcase the capabilities of this platform and 
investigate the environmental impacts of the driving behav-
iors from two subject drivers under different scenarios (with 
varying penetration rates of CAVs and congestion levels). The 
results indicated that the proposed platform is well suitable 
for comprehensive human factor-related research.

The development of such co-simulation platforms would 
definitely unlock unprecedented opportunities to study high-
fidelity driving behaviors and delicate interactions between 
human-driven vehicles and CAVs under various controlled 
scenarios, although there remain some challenges to 
be addressed in the future. For example, stricter calibration 
procedures of co-simulation process, better time synchroniza-
tion across different components (of the platform) in a mixed 
reality environment, and latency reduction of data exchanging 
with the cloud are open questions deserving further exploration.
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Definitions/Abbreviations
ADAS - Advanced Driver-Assistance Systems
API - Application Programming Interfaces
AWS - Amazon Web Services
CADS - Cooperative Automated Driving Systems
CAV - Connected and Automated Vehicle

CL - Congestion Level
COM - Component Object Model
FPS - Frame per Second
HCV - Human-Controlled Vehicle
HID - Human Interference Device
HuiL - Human-in the-Loop
IDM - Intelligent Driver Model
PR - Penetration Rate
RC Cars - Radio-controlled Cars
SDK - Software Development Kit
STD - Standard Deviation
SUMO - Simulation of Urban MObility
TTC - Time to Collision
UDP - User Datagram Protocol
V2X - Vehicle to Everything
VPC - Virtual Private Cloud
VR - Virtual Reality
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