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Abstract—Connected and automated vehicle (CAV) technology has the potential to greatly improve trans-
portation mobility, safety, and energy efficiency. However, ubiquitous vehicular connectivity also opens up 
the door to cyberattacks. In this study, we investigate cybersecurity risks of a representative cooperative 
traffic management application, i.e., highway on-ramp merging, in a mixed traffic environment. We de-
velop threat models with two trajectory spoofing strategies on CAVs to create traffic congestion and devise 
an attack-resilient strategy for system defense. Furthermore, we leverage VEhicular NeTwork Open Simu-
lator, a Veins extension simulator made for CAV applications, to evaluate cybersecurity risks of the attacks 
and performance of the proposed defense strategy. A comprehensive case study is conducted across dif-
ferent traffic congestion levels, penetration rates of CAVs, and attack ratios. As expected, the results show 
that mobility performance decreases up to 55.19% in the worst case when the attack ratio increases, as do 
safety and energy. With our proposed mitigation defense algorithm, the system’s cyberattack resiliency is 
greatly improved.
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Connected and Automated Vehicle Technology

T
he ever-increasing number of vehicles on our roads 
negatively impacts safety, traffic efficiency, and the 
environment. In terms of safety, according to data 
from the World Health Organization, road traffic 

injuries caused approximately 1.35 million deaths world-
wide in 2016 [1]. Moreover, a study by the Massachusetts 
Institute of Technology in 2013 indicated an annual 53,000 
premature deaths due to health problems caused by ve-
hicle emissions [2]. To address these problems, connected 
and automated vehicle (CAV) technology has the poten-
tial to reduce traffic accidents, enhance quality of life, 
and improve efficiency of our transportation system [3]. 
CAVs can not only perceive the surrounding environment 
with onboard sensors such as cameras, radar, and lidar 
but also communicate with each other or with roadside 
infrastructure via vehicle-to-vehicle (V2V) or vehicle-to-
infrastructure (V2I) communications. This enables CAVs 
and other road users to perform specific operations effi-
ciently and collaboratively.

As a representative scenario for highway driving, ramp 
merging has received significant attention over the years. 
Various traffic control strategies have been applied at 
ramp merging to regulate vehicular inflow rates to avoid 
mainline traffic breakdowns. A widely used ramp man-
agement strategy for legacy vehicles is ramp metering, 
which governs on-ramp vehicles’ entry to the mainline 
by traffic lights [4]. However, ramp metering often intro-
duces stop-and-go maneuvers [5], [6], which significantly 
degrade overall system performance. To address this is-
sue, many researchers have leveraged CAV technology and 
developed advanced ramp merging systems [7], which can 
coordinate CAVs into platoons or closely-spaced strings to 
maximize the throughput while smoothing speed trajec-
tories [5], [8]. Such cooperative highway on-ramp merging 
systems are expected to significantly reduce traffic con-
gestion by sharing information and implementing appro-
priate control measures.

It is clear that legacy vehicles and CAVs (with varying 
penetration rates, connectivity capabilities, and automa-
tion levels) will have to share the roads during a transition 

period, which may span several decades. Therefore, it is 
more realistic and valuable to develop an effective ramp 
merging strategy for mixed traffic and investigate its per-
formance in terms of safety, efficiency, and environmen-
tal sustainability [9], [10]. Many researchers have dug into 
this problem with different methods [11]–[13], but they fail 
to address potential cybersecurity risks in communica-
tion and perception. To ensure resilient operation and the 
safety of all road users, potential exposure of cyberattacks 
[14] should be considered for real-world implementation, 
and a cybersecurity-awareness defense strategy should be 
carefully designed.

This article reveals the potential cybersecurity risk of 
a highway ramp merging strategy under mixed traffic and 
provides an effective defense solution. More specifically, 
the three major contributions of this article are as follows:
1)	 Two spoofing strategies are designed, which cannot 

be detected through inconsistent speed and position 
information, for the cooperative highway on-ramp 
merging strategy

2)	 A minimum mean-square estimation (MMSE)-based 
defense algorithm is devised to detect the attacks and 
mitigate their negative impacts on the entire traffic.

3)	 A comprehensive evaluation is conducted for the cyber-
security risks of the proposed merging strategy with 
these two attacks and the performance of the corre-
sponding defense strategy.

Background
In this section, we briefly review relevant studies on CAV-
based cooperative highway on-ramp merging applications 
and potential cybersecurity risks in CAV applications. We 
also introduce a simulation environment for analyzing 
traffic impacts of cyberattacks.

CAV-Based Cooperative Ramp Merging
The authors of [5] proposed a cooperative merging system 
based on V2X communications and adopted a microscop-
ic traffic simulator to evaluate its performance in terms 
of highway capacity. The basic idea is to use roadside 
unit (RSU)-equipped infrastructure to collect onboard 
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unit-equipped vehicles’ information in the form of basic 
safety messages (BSMs) [15] via V2V and V2I communica-
tions. With this information, the system can provide speed 
guidance to the involved CAVs to improve merging effi-
ciency. Zhao et al. [8] developed a hierarchical CAV-based 
ramp management system that can perform cooperative 
merging maneuvers for CAVs at the individual ramp level 
and simultaneously regulate the inflow rates of multiple 
ramps. Some of these existing studies assume a full pene-
tration rate of CAVs for effective ramp merging control. The 
feasibility and performance of their algorithms in mixed 
traffic still need to be verified. Chen et al. [16] offered a 
hierarchical control approach consisting of both a tactical 
and operational layer to enable efficient and safe merging 
operations. Rios-Torres and Malikopoulos [17] put forward 
a coordination strategy that allows vehicles to merge with-
out creating congestions under collision-avoidance con-
straints, thus reducing both fuel consumption and travel 
time. Davis [9] showed that traffic congestion might be 
significantly mitigated even with a 50% penetration rate 
of adaptive cruise control-enabled vehicles. It is noted that 
most of these ramp merging-related studies for mixed traf-
fic do not consider potential cybersecurity issues.

Cybersecurity for CAV-Based Applications
Bhat [18] presented an overview of commonly seen secu-
rity risks associated with both automotive radar and dedi-
cated short-range communication (DSRC) systems, such 
as jamming and spoofing. According to the authors of [19], 
jamming attacks include denial-of-service (DOS) and dis-
tributed DOS (DDOS) attacks, while spoofing attacks com-
prise black-hole, Sybil, and replay kinds. In this article, we 
focus on man-in-the-middle attacks. Chen et al. [20] in-
vestigated cybersecurity vulnerabilities in the intelligent 
traffic signal system (I-SIG) application and concluded that 
current signal control algorithms are highly vulnerable 
to data spoofing attacks, even only one single attacked ve-
hicle. They also assumed that I-SIG [21] had utilized the 
Security and Credential Management System (SCMS) [22]. 
This required every BSM to be signed by the sender’s digi-
tal certificate to ensure the message’s integrity before CAVs 
and infrastructure were allowed to participate in further 
communications. Thus, the receiver could verify the send-
er’s identity by the signature. This study also assumes that 
the SCMS has been deployed to ensure that all the BSMs 
are authenticated. Cui et al. [23] developed an evaluation 

platform that simulated vehicles’ 
sensor errors and communication 
delays to investigate the effect of 
cyberattacks on the cooperative 
adaptive cruise control. They de-
ployed heuristic cyberattacks on 
the third vehicle in the platoon by 
assigning constant errors on the 

GPS and radar information since the preset time step. Such 
attacks can be easily detected due to large position jumps, 
lane overtaking, and inconsistent speeds/positions. In this 
article, we propose two attack strategies that are hard to be 
detected by checking for data inconsistency. 

Wang et al. [24] incorporated the intelligent driver 
model and communication scheme to numerically analyze 
cyberattack effects on connected automated vehicular pla-
toons without a comprehensive evaluation in a microscop-
ic simulation environment. In [25], the authors deployed 
three different attack methods on the proposed collective 
perception-based on-ramp merging control algorithm and 
measured their impacts. However, they did not provide 
an effective defense method to mitigate the potential at-
tacks. Xu et al. [26] focused on the sensor perception aspect 
and aimed to reveal the security risks of onboard sensors. 
They proposed two defense strategies against their well-
designed attacks on ultrasonic sensors to improve system 
resilience and validated them in both simulation and the 
real world. Giraldo and Cardenas [27] proposed a moving-
target defense strategy for multivehicle systems to mitigate 
the impacts caused by cyberattacks. Liu et al. [28] present-
ed an attack-resistant location-estimation approach based 
on the MSE of distance difference between the declared 
distance and the distance determined by the received sig-
nal strength index (RSSI) [29] of the radio signal to tolerate 
malicious attacks. The RSSI is an indicator of signal qual-
ity and widely used to calculate received signal power [30]. 
In wireless channel models, received power is inversely 
proportional to the distance between the sender and re-
ceiver. Motivated by this idea, in this study, we develop a 
secure and resilient defense strategy to detect and filter 
out malicious attacks. Although RSSI localization has rela-
tively lower accuracy than other ranging techniques due to 
multipath radio signals’ propagation [31], it is considered 
a cost-effective method for rough position estimation [32], 
[33] and is suitable for our study purposes.

Simulation Environment
In this study, we adopt and utilize VEhicular NeTwork 
Open Simulator (VENTOS) [34] to perform the simulation. 
VENTOS is a Veins extension simulator for modeling vehic-
ular traffic flows, collaborative driving, and interactions 
among or between CAVs and infrastructure equipped with 
DSRC. DSRC [35] is a wireless communications standard 
featuring reliable and low-latency data transmission. More 

As a representative scenario for highway driving, ramp merging 
has received significant attention over the years.

Authorized licensed use limited to: UCLA Library. Downloaded on February 05,2024 at 01:12:55 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  55  •  NOVEMBER/DECEMBER 2022IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  54  •  NOVEMBER/DECEMBER 2022

specifically, VENTOS combines 
the capabilities of both vehicular 
traffic simulation from Simulation 
of Urban Mobility (SUMO) [36] and 
communication network simula-
tion from Objective Modular Net-
work Testbed in C++ (OMNET++) 
[37]. SUMO is a highly portable, 
microscopic, and continuous traf-
fic simulator designed to handle 
large roadway networks, while OMNET++ is a C++ simula-
tion library that can simulate high-fidelity, complex com-
munication networks.

Methodology
In this section, we present the mixed traffic cooperative 
highway on-ramp merging algorithm to be used in the 
simulation, followed by an elaborate description of threat 
models and defense strategies. The general assumptions in 
this study are as follows:

■■ All CAVs consistently send BSMs, including positions, 
speeds, and accelerations, via V2I communications to 
the RSU-equipped infrastructure. Furthermore, they 
strictly follow the speed guidance recommended by the 
infrastructure.

■■ In the network with a multilane mainline segment, 
only CAVs involved in merging maneuvers (i.e., those 
vehicles on the merging lanes) would be controlled by 
the proposed algorithm and are susceptible to attacks 
by the malicious actor.

■■ We assume that the attacker can only modify the content 
of BSMs but not manipulate the radio signal strength 

within the effective area, which is defined as the over-
lapped region of both the RSU’s and the attacker’s com-
munication coverage (given that the RSU is within the 
attacker’s coverage).

■■ We also assume that the SCMS is deployed and cannot 
be exploited, which means that the attacker cannot fal-
sify the signatures of senders.

Cooperative Highway On-Ramp  
Merging Algorithm in Mixed Traffic
The proposed cooperative highway on-ramp merging 
system relies on V2I communications. When CAVs on the 
on-ramp and rightmost lane of the mainline enter the com-
munication range of the RSU-equipped infrastructure 
in the merging area, they broadcast their state infor-
mation via BSMs. After receiving the involved CAVs’ 
states, the RSU will perform the proposed ramp merg-
ing algorithm (shown in Figure 2) to determine the 
merging sequence and longitudinal speed for each CAV 
and broadcast this information to enable cooperative 
maneuvers. The overall system architecture is illus-
trated in Figure 1. First, we specify upstream roadway 

Buffer Zone

Control Zone

Attacker

RSU

Attacker RangeRSU Range

Buffer Zone
Control Zone

FIG 1 The overall system architecture of the threat models.

The LC2013 lane-changing model was developed by Jakob 
Erdmann and consists of four different motivations for lane 
changes: strategic, cooperative, tactical, and regulatory.
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segments with respect to the merging area (within the 
RSU communication range) with two types of zones: 
control and buffer zones. In buffer zones, the RSU can 
sort out the incoming CAVs based on their distances to 
the merging point. In control zones, the RSU sends rec-
ommended speeds back to respective CAVs. The f low-
chart of the system is shown in Figure 2.

Vehicle Sequence Algorithm
The RSU collects the information from CAVs on both the 
mainline and on-ramp via V2I communications and de-
termines their entrance sequence based on their distanc-
es to the merging point. Moreover, if the distance between 
two CAVs is too far (e.g., due to legacy vehicles), we split 
the string into two and create a new leader for the new 
string. We then apply customized motion control for each 
string of CAVs.

Motion Control Algorithm
Once CAVs are arranged into strings, the RSU will apply 
the following control algorithm to enable cooperatively 

merging maneuvers. The control 
algorithm can compute the recom-
mended speed for every following 
vehicle based on the state of its 
predecessor. Li et al. [38] provided 
a general car-following model that 
can be used to describe vehicles’ 
longitudinal dynamics:

x t v tn n=o ^ ^h h� (1)

	 , , .v t f s v t v tn n t n nT=o ^ ^ ^ ^^h h hhh � (2)

Based on this model, we conduct our control algorithm for 
acceleration of the ego vehicle:
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where ( )a t  is acceleration of the ego vehicle at time step ;t  
kd  and kv  are control gains for distance and speed, respec-
tively; Sheadway  is the distance between the ego vehicle and 
its predecessor; Slength  is the ego vehicle’s length; S  safe gap  
is the safety distance gap, which can guarantee minimum 
clearance between two vehicles; ( )tvfront  is the velocity of 
the front vehicle at time step ;t  and ( )v tself  is the velocity of 
the ego vehicle at time step .t

Thus, the recommended speed can be derived based on 
the acceleration.

	 ,v t a t t v t 1step self)= + -^ ^ ^h h h � (4)

where tstep  is the simulation time step, and ( )v t 1self -  is 
the velocity of the ego vehicle at time step ( ).t 1-  The lead-
er of each string is recommended to travel at the roadway 
speed limit. Based on our assumptions, CAVs that are not 
on the rightmost lane of the mainline are not controlled 
by the merging algorithm. Similar to all legacy vehicles, 
their longitudinal behaviors are controlled by the Krauß 
car-following model [39], [40], and their lateral maneuvers 
are governed by the LC2013 lane-changing model [41].

The Krauß model is defined as [40]
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where gdes  is the desired gap, x  is the reaction time of 
drivers, bx  is the time for deceleration, vsafe  is the safe 
speed, vdes  is the desired speed, vmax  is the maximum 
speed, and h  is the random perturbation. The two major 
modifications on this model made by SUMO are 1) using 

Receive Messages

In the
Buffer Zone?

In the
Control Zone?

Sort by Distance to
the Merge Point

Create Platoon Based
on the Sequence

Control Algorithm

Release the Control
of the Platoon

FIG 2 The system workflow of the cooperative ramp merging  
strategy for CAVs.

When traffic is light, benefits from the increasing  
penetration rate of CAVs could not offset the negative 
impacts due to cyberattacks.
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the Euler-position update rule to make the safe-speed for-
mula suitable for maintaining safety and 2) using different 
deceleration capabilities to avoid violating safety [41].

The LC2013 lane-changing model was developed by 
Jakob Erdmann and consists of four different motivations 
for lane changes [41]: strategic, cooperative, tactical, and 
regulatory. When a vehicle (either legacy or CAV) reaches 
the merging point, the lane-changing model will allow the 
vehicle to merge when it is safe. Otherwise, the vehicle will 
wait for a suitable gap to merge.

To avoid the collision of a CAV with its preceding legacy 
vehicle in the mixed traffic simulation, we apply a heuris-
tic gatekeeping logic by consistently comparing the recom-
mended speed with the safe speed from the Krauß model 
and choosing the lower one as the target speed, i.e.,

	
,

, .v
v
v

v v
v vtarget

safe

recommended

safe recommended

safe recommended

1
2

= ' � (9)

Please note that model predictive control could also be an 
alternative to handle this type of safety constraint [16].

Threat Models
The proposed attack strategies aim at creating congestion 
while not being easily detected by simple defense approach-
es, such as inconsistency of a vehicle’s location and speed, 
teleporting, or same-lane overtaking. Before the elabora-
tion of attack strategies, we illustrate the scenario setup, 
as presented in Figure 1. The attacker is located near the 
RSU and can intercept the BSMs broadcasted by equipped 
vehicles. Then, the attacker deploys man-in-the-middle at-
tacks to modify the BSMs and resends them to the RSU. For 
example, the red vehicle is the attacked vehicle, and the 
dashed line represents the associated location where the 
attacker tries to spoof the RSU. In the following, we detail 
two nontrivial spoofing strategies.

Emergency Stop Spoofing
When a target CAV enters the attacker’s communication 
range, the attacker can consistently receive BSMs from 
this CAV. The attacker deploys man-in-the-middle attacks, 
which make the CAV’s location information frozen at the 
respective entrance point, falsify its speed information to 
be zero, and then resend all this information to the RSU. 
In this case, the control algorithm will provide incorrect, 
recommended speed information to those following CAVs 
within the same attacked vehicle string to make them 
slow down or even completely stop. The pseudocode is 
shown in Algorithm 1.

Accumulative Position Drift Spoofing
In this type of attack, the attacker keeps receiving BSMs 
from the target CAV after entering the attacker’s commu-
nication range. Then, the attacker continuously generates 
falsified speed information over time, i.e., a speed profile 

that is slightly lower than the actual speed profile of the 
attacked vehicle. In addition, the spoofed location is com-
puted based on the falsified speed, i.e.,

	 Tspeed speed acceleration delta)= + � (10)

	 .
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)

)
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This slight inconsistency of location and speed may be 
considered a result of signal loss or GPS errors. Howev-
er, as position drift accumulates, more severe impacts 

INPUT: BSM from target CAVs.
INITIALIZE SpFlag = 0, SpLoc, SpBSM, ActLoc, SpSpeed
IF Received a BSM from a target CAV THEN
    SpBSM = BSM
    IF SpFlag = 0 THEN
        ActLoc = location contained in the BSM
            SpLoc = ActLoc
            SpFlag = 1
    END IF
    SpSpeed = 0
    Set SpSpeed to be the speed in SpBSM
    Set SpLoc to be the location in SpBSM
    Resend the SpBSM to the RSU
END IF

SpFlag: Spoofing_flag; SpLoc: Spoofing_Location; SpBSM: Spoofing_BSM; 
ActLoc: Actual_Location; SpSpeed: Spoofing_Speed.

Algorithm 1. Emergency Stop Spoofing Algorithm.

INPUT: BSM from target CAVs.
INITIALIZE SpFlag = 0, SpLoc, SpSpeed, LastTS, Acc = -2.5
IF Received a BSM from a target CAV THEN
    SpBSM = BSM
    IF spFlag = 0 THEN
        LastTS = time stamp contained in the BSM
        ActLoc = location contained in the BSM
              ActSpeed = speed contained in the BSM
              SpLoc = ActLoc
              SpSpeed = ActSpeed
              SpFlag = 1
    ELSEIF SpSpeed > 0 THEN
        ActTS = time stamp contained in the BSM
        DelT = LastTS - ActTS
        Compute SpSpeed using equation (10)
        Compute SpLoc using equation (11)
        LastTS = ActTS
    END IF
    Set SpSpeed to be the speed in SpBSM
    Set SpLoc to be the location in SpBSM
    Resend the SpBSM to the RSU
END IF

Algorithm 2. Accumulative Position Drift Spoofing Algorithm.
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(e.g., congestion) on the upstream traffic would begin to 
show up.  The pseudocode is shown in Algorithm 2.

Defense Strategy
Motivated by Liu et al. [28], we define an MSE-based attack-
resilient defense strategy to detect and filter BSMs with 
spoofed data on the RSU side. We exploit the advantage that 
once the RSU receives a BSM, the infrastructure can get 
the BSM’s RSSI. The RSSI is approximately inversely pro-
portional to the distance between the sender and the re-
ceiver. Our defense strategy aims to find the outlier(s) with 
more significant error(s) compared to others. Therefore, 
it does not require accurate transmission distances that 
would be challenging for RSSI-based estimation. In this 
case, the RSU receives BSMs from both CAVs and the at-
tacker and feeds them into the vehicle sequence algorithm 
to identify strings. For each string, we compute MSEs of 
distance measurements based on the RSSI statistics and lo-
cation information embedded in the received BSMs. Thus,

	 ,m
x x y y i i i2

2 2 2

w
d

=
- - + -/ ^ ^ ^h h h

� (12)

where id  is the distance measured by the RSSI for the ith 
CAV; xi  and yi  represent the latitude and longitude, re-
spectively, contained in the BSM of the ith CAV; x  and y  
are the GPS coordinates of the RSU; and m  is the total 
number of CAVs in this string. We then define a threshold 
x  by the average MSE when there are no attacks:
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j
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x
/

� (13)

INPUT: A set of BSMs from CAVs: Platoon
OUTPUT: Platoon
INITIALIZE: Flag = True, M = size of Platoon, Threshold, MMSE
WHILE M > 1 AND Flag = True
    SUM_MSE = 0
    FOR i = 0 to M
        Compute the MSE using to equation (12)
        SUM_MSE = SUM_MSE + MSE
    END FOR
    IF SUM_MSE < Threshold THEN
        BREAK
    ELSE
        SUM_MSE = 0
        FOR j = 0 to M
              FOR i = 0 to M
                      IF j! = i THEN
                          Dist, Loc ! BSM of Platoon[i]
                          Compute the MSE using to equation (12)
                          SUM_MSE = SUM_MSE + MSE
                      END IF
              END FOR
              IF SUM_MSE < Threshold THEN
                  Flag = False
                  Remove Platoon[j] from Platoon
                  BREAK
              ELSEIF SUM_MSE < MMSE
                  MMSE = SUM_MSE
                  Delete_Vehicle = Platoon[j]
              END IF
        END FOR
        Remove Delete_Vehicle from Platoon
        M = M – 1
    END IF
END WHILE

Algorithm 3. An MSE-Based Attack-Resilient Defense Algorithm.

Attacker

RSURamp Vehicle Attacked Vehicle

Mainline Vehicle

RSU[0]
V[6]V[10]

V[11]
V[7] V[8]

V[5] V[2] V[4] V[3]

V[1] V[0]

ADV[0]
V[9]

Beacon Message

(a)

(b)

FIG 3 VENTOS simulation network and visualization. (a) A simulation network of the highway and the ramp and (b) BSM transmission visualization.  
ADV: adversary; V: vehicle.
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where j
2w  is the MSE of string j  that all CAVs are benign 

and n  is the number of strings. If the MSE is lower than ,x  
the string is considered a benign set that does not include 
attacked vehicle(s). Therefore, our goal is to identify the 
largest benign set of CAVs’ distance.

To reduce computational loads of the defense strate-
gy, we propose a step-wise deletion greedy algorithm (as 
shown in Algorithm 3). This greedy algorithm starts with 
the initial location set, including all CAVs of the string. In 
subsequent time steps, the algorithm will keep verifying 
whether the MSE of the current set of CAVs’ locations is 
lower than the threshold. If the answer is yes, the set is 
confirmed for further control. Otherwise, the algorithm 
computes the MSEs of all possible sets and chooses the 
subset with the least MSE as the input to the next time step. 
This algorithm continues until it finds the set that meets 
the threshold condition.

Simulation Study and Results
In this section, we describe the simulation’s settings and 
parameters, evaluate the system performance, including 
mobility, safety, and environment under different sce-
narios (e.g., with and without cyberattacks as well as the 
defense strategy), and analyze the simulation results. We 
choose one traffic demand as our benchmark and evaluate 
the improvement or deterioration compared to the baseline 
(no CAVs and thus no cyberattacks).

We set up the simulation environment with VENTOS, 
using the network shown in Figure 3(a). The only transmis-
sion noise is “thermal noise,” which is set to be −90 dBm. To 
make the simulation more realistic, we add noise to the ve-
hicles’ positions in the simulation based on a random walk 
model. A transmission power of 20 mW and data rate of 6 
Mbps are chosen as the default values in VENTOS. There 
are two lanes on the highway segment and one on the on-
ramp. Only the CAVs on the rightmost lane of the highway 
and the on-ramp (i.e., involved in merging maneuvers) 
would play a major role in this simulation controlled by 
the merging algorithm. With VENTOS, we can also visu-
alize BSM transmission, as depicted in Figure 3(b). As 
mentioned previously, we assume that the RSSI cannot be 
compromised. The vehicles on the highway can change 
their lane freely based on the default lane-changing algo-
rithm in SUMO. The attacks start only when the target CAV 
enters the attacker’s effective area and stop when it exits 
the area. For those CAVs traveling along the mainline, we 
assume that attacks can be deployed immediately once the 
target CAVs are traveling on the rightmost lane and con-
tinuously take effect even when they change to the left lane 
afterward, as long as they are still within the attacker’s 
range. In the simulation study, we set the traffic demand 
ratio between highway and on-ramp to 3:1, and the road-
way capacity to be 2,000 passenger car units per hour per 
lane (pcu/h/ln). With different volume-to-capacity (V2C) 
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FIG 4 The bar charts of efficiencies in different cases. (a) A 100% 
penetration rate, (b) zero attack ratio, and (c) 0.5 attack ratio.  
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ratios, we schedule each vehicle’s departure time using a 
Poisson distribution.

We evaluate the performance of mobility with four CAV 
penetration rates (i.e., 0, 20, 50, and 100%), three V2C ra-
tios (i.e., 0.3, 0.6, and 0.9), and four attack ratios (i.e., 0, 
0.1, 0.25, and 0.5), which represent the percentages of at-
tacked CAVs with respect to the entire CAV population. As 
evaluating a nonzero attack ratio in a non-CAV scenario is 
meaningless, we focus on 39 different cases in total. The 
simulation time for each run is set to 20 min. The mobility 
performance is measured by the network efficiency,

	 ,Q VHT
VMT= � (14)

where VMT and VHT are the total vehicle miles traveled 
and total vehicle hours traveled in the network, respective-
ly. The efficiencies of three typical cases are presented in 
Figure 4. Figure 4(a) shows the efficiency as a mapping of 
both attack and V2C ratios under a 100% CAV penetration 
rate. It can be observed that efficiencies decrease as the 
attack ratio increases. From Figure 4(a) and (b), it can be 
seen that as the V2C ratio decreases, efficiencies increase. 
In the case without an attack, we note the positive corre-

lation between penetration rate and 
efficiency. By observing Figure 4(c), 
where the attack ratio is 0.5, we note 
that the results are quite different 
from Figure 4(b). Because of the at-
tack, the system performance would 
vary under different V2C ratios. When 
traffic is light, benefits from the in-
creasing penetration rate of CAVs 
could not offset the negative impacts 
due to cyberattacks. Therefore, the 
system efficiency decreases as the 
penetration rate increases. When traf-
fic gets more congested, system effi-
ciency may peak at the penetration 
rate level of 50%.

Table 1 summarizes the overall 
mobility performance of selected 
cases. As expected, higher penetra-
tion rates mean higher mobility ef-
ficiencies in a nonattack scenario 
with a fixed V2C ratio. However, this 
observation does not hold under at-
tacks. As shown in cases 27, 28, and 
29 (i.e., with a 0.5 attack ratio), effi-
ciencies decrease significantly with 
increasing CAV penetration rates. 
When the attack ratio is 0.25 (e.g., 
cases 4, 5, and 6), the difference in 
efficiency is not significant, but VMT 
drops rapidly when the penetration 

Case  
Index

Penetration 
Rate

Attack 
Ratio

V2C 
Ratio

VMT 
(mi)

VHT 
(h)

Efficiency 
(mi/h)

1 100 0.5 0.9 26 2.4 10.9

2 50 0.5 0.9 68.7 4.5 15.4

3 20 0.5 0.9 89.1 6.8 13.1

4 100 0.25 0.9 38.9 2.6 14.9

5 50 0.25 0.9 68.8 4.5 15.2

6 20 0.25 0.9 90.9 7.2 12.7

10 100 0 0.9 97.7 4 24.4

27 100 0.5 0.3 31.2 2.2 14.2

28 50 0.5 0.3 60.2 3.3 18.5

29 20 0.5 0.3 70.7 2.9 24.8

31 50 0.25 0.3 63.2 2.9 22.1

34 50 0.1 0.3 64.1 2.7 23.5

37 50 0 0.3 67 2.5 26.9

Table 1. The traffic flow mobility performance of selected 
simulation cases. 

Case 
Index

Penetration 
Rate (%)

Attack 
Ratio

V2C 
Ratio

Velocity 
Mean 
Absolute 
Deviation 
(m/s)

Velocity 
Standard 
Deviation 
(m/s)

Acceleration Mean 
Absolute Deviation  
(m/s2)

Acceleration 
Standard 
Deviation 
(m/s2)

28 50 0.5 0.3 5.81 5.14 3.05 3.76

31 50 0.25 0.3 5.15 3.96 3.47 4.07

33 100 0.1 0.3 5.86 4.37 2.98 3.82

34 50 0.1 0.3 2.98 2.56 3.53 4.12

35 20 0.1 0.3 2.68 1.84 4 4.46

36 100 0 0.3 2.19 1.05 2.89 3.72

37 50 0 0.3 2.38 1.38 3.78 4.3

38 20 0 0.3 2.69 1.46 3.99 4.45

39 0 0 0.3 2.96 1.93 4.05 4.47

Table 2. The traffic flow safety performance of selected simulation cases.

Case 
Index

Penetration 
Rate (%)

Attack 
Ratio

V2C 
Ratio

Fuel  
(gal/mi)

CO  
(gal/mi)

HC  
(gal/mi)

NOx  
(gal/mi)

PM 2.5 
(gal/mi)

CO2 
(gal/mi)

28 50 0.5 0.3 187.6 1.6515 0.0137 0.0729 0.0036 598.9

31 50 0.25 0.3 178.3 1.6376 0.0134 0.0712 0.0034 569.5

34 50 0.1 0.3 173.3 1.7115 0.0137 0.07 0.0035 553.5

37 50 0 0.3 166 1.5427 0.0126 0.0672 0.0032 530.2
CO: carbon monoxide; HC: hydrocarbon; NOx: nitrogen oxide; PM: particulate matter. 

Table 3. The traffic flow energy performance of selected simulation cases.
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rate increases. This indicates that traffic gets more con-
gested, and spawning of vehicles in simulation is even 
blocked. Under the same penetration rate, as the V2C ratio 
is reduced, deploying more attacks can reduce efficiency 

(see cases 28, 31, 34, and 37). With the same attack ratio 
(e.g., 0.25 or 0.5) and a high V2C ratio (e.g., 0.9), efficien-
cies show slight fluctuations, as indicated in cases 1, 2, 3, 
and 4. One hypothesis is that vehicles are moving slowly on 
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FIG 5 The time-space diagrams of two cases with different penetration rates, with a zero attack ratio and a 30% volume-to-capacity ratio. (a) The baseline 
and (b) a 50% penetration rate. 
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the entire approach when the traffic volume reaches the 
road capacity. In these cases, increasing the attack ratio 
introduces more chaos into the network, reducing traffic 
throughput at the bottleneck (i.e., the ramp merging area), 
as observed from the VMT values. In particular, the most 
congested case is case 1, whose efficiency is only 10.9 mi/h, 
55.19% worse than its counterpart—case 10 (with the same 
V2C ratio and penetration rate but no attacks).

On the other hand, we quantify the safety risks due to 
cyberattacks in terms of driving volatility, representing 
vehicle movement stability. In this article, standard devia-
tion and mean absolute deviation measurements [42] are 
used for computing driving volatility, which are defined, 
respectively, as 

	 S n x x1
1

i

n

i
1

2
dev = -

-
=

/ r^ h � (15)

	 ,D n x x1
i

n

i
1

mean = -
=

/ r � (16)

where n  is the total number of observations, xi  represents 
the ith of observations, xr  is the mean of observations, and 
Sdev  is the standard deviation. A larger deviation means 
higher driving volatility.

As listed in Table 2, deviations of velocity and accel-
eration decrease when penetration rates rise under the 

scenarios of nonattack and fixed traffic volumes. In par-
ticular, when the penetration rate is 50% (i.e., cases 28, 31, 
34, and 37), the deviation of acceleration reduces while the 
deviation of velocity increases, as the attack ratio grows. 
Please note that high velocity deviation means instability 
in traffic.

We further analyze energy consumption and pollutant 
emissions with the U.S. Environmental Protection Agen-
cy’s MOtor Vehicle Emission Simulator (MOVES) [43]. The 
selected results are summarized in Table 3. From this ta-
ble, it can be observed that with increase of the CAV pen-
etration rate, fuel consumption and carbon dioxide (CO2) 
emissions decrease, which matches the conclusion by 
Wang et al. [5]. According to cases 28, 31, 34, and 37, we can 
conclude that fuel consumption and CO2 and nitric oxide 
emissions are positively correlated with the attack ratio.

To investigate system performance under the other at-
tack strategy and defense algorithm, we select the bench-
mark scenario with 900 pcu/h/ln on the highway and 
300 pcu/h/ln on the on-ramp under a 0.3 V2C ratio. The 
baseline case is set with the same demand: a 0% pene-
tration rate and zero attack ratio, whose time-space dia-
gram is shown in Figure 5(a). The total VMT and VHT of 
the baseline case are 67.1 mi and 2.8 h, respectively, and 
the network efficiency is 23.7 mi/h. Figure 5(b) presents 
the time-space diagram for the scenario, with a 50% CAV 
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FIG 6 Time-space diagrams under accumulative position drift spoofing attacks with a 0.5 attack ratio. 
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penetration rate. Compared to the 
baseline, network efficiency in-
creases by 13.9% (to 26.9 mi/h). 
As displayed in the zoom-in parts 
of the time-space diagrams at the 
ramp merging area, applying the 
proposed merging strategy can sig-
nificantly help mitigate upstream 
shockwaves and smooth vehicle 
trajectories.

Next we enable the attacker’s behaviors with a 0.5 at-
tack ratio. Under the first attack strategy, VMT is decreased 
to 60.2 mi, VHT is reduced to 3.3 h, and the network ef-
ficiency is only 18.5 mi/h. With the same attack ratio, we 
deploy the second attack strategy, i.e., accumulative posi-
tion drift spoofing, and traffic gets more congested. The 
efficiency is 17.9 mi/h, and VMT and VHT are 48.6 mi and 
2.7 h, respectively. The time-space diagram of the second 
attack strategy is illustrated in Figure 6. It can be observed 
from the zoom-in area in Figure 6 that the shockwaves cre-
ated by attacks occur much more frequently and last much 
longer compared to the case without attacks. We also de-
ploy the proposed defense algorithm to detect and filter out 
the malicious information created by attacks. Due to in-
troduction of the defense algorithm, the network efficien-
cies under the first and second attack strategies become 

26.2 and 25 mi/h, respectively, both of which are much 
better than the associated cases without defense and near-
ly as close to the cases without attacks. Figure 7 depicts 
the time-space diagram after implementing the defense  
strategy under the second attack strategy. As represented 
by the smoother trajectories and fewer shockwaves in the 
figure, the defense strategy can help alleviate the conges-
tion caused by attacks. Table 4 summarizes key statistics of 
representative scenarios.

Conclusions and Future Work
This study revealed the cybersecurity risks of a typical  
CAV application, i.e., cooperative highway on-ramp merg-
ing in a mixed traffic environment. Two nontrivial cy-
berattack strategies, i.e., emergency stop spoofing and 
accumulative position drift spoofing, were proposed and 
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FIG 7 Time-space diagrams under the second type of attacks with a defense strategy.

Note that it is not necessary to base our proposed attack and 
defense strategies on DSRC, but they applicable to other 
communication technologies, including cellular V2X.
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deployed in VENTOS. The simulation results of mobility, 
safety, and environmental sustainability for 39 cases with 
different CAV penetration rates, V2C ratios, and cyberattack 
ratios were compared and analyzed. In the worst case, up 
to a 55.19% decrease in network efficiency was observed. 
Unlike the scenarios without cyberattacks, cases with 
higher CAV penetration rates were more susceptible to the 
presence of attacks, leading to significant system perfor-
mance degradation. To address this issue, an MMSE-based 
defense algorithm was proposed and deployed in this study. 
The simulation results indicated that the proposed defense 
algorithm can well improve the cyberattack resilience of 
the system. It can recover most of the benefits from the co-
operative merging system under two attack strategies and 
even performed better than non-CAV scenarios. Note that 
it is not necessary to base our proposed attack and defense 
strategies on DSRC, but they applicable to other communi-
cation technologies, including cellular V2X. 

As a future step, other types of cyberattack risks, such 
as jamming (DOS or DDOS), black hole, and Sybil, will be 
devised and evaluated for cooperative highway on-ramp 
merge scenarios. The cybersecurity performance of other 
CAV applications will also be investigated, and respective 
defense strategies should be designed to improve the at-
tack-resilience performance of target CAV systems.
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VMT (mi) VHT (h)
Efficiency 
(mi/h)

Baseline (0% penetration rate, 
zero attack ratio, 30% V2C ratio)

67.1 2.8 23.7

Cooperative merging system 
(50% penetration rate)

67 2.5 26.9

Emergency stop spoofing  
(0.5 attack ratio)

60.2 3.3 18.5

Accumulative position drift 
spoofing (0.5 attack ratio)

48.6 2.7 17.9

Emergency stop spoofing with 
defense algorithm

64.6 2.5 26.2

Accumulative position drift 
spoofing with defense algorithm

73 2.9 25

Table 4. The traffic flow mobility performance  
of each simulation case.
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