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Abstract—Understanding the behavior of human drivers and
how they interact with other drivers is crucial to develop
and improve the decision-making capabilities of connected and
automated vehicles (CAVs). This allows CAVs to anticipate and
proactively respond to the actions of other road users in a safe
and efficient manner, especially in mixed-traffic environments.
Most existing studies rely on neural networks to model such
interaction implicitly, and very few studies attempt to interpret
the interaction. Considering its interpretability and flexibility, the
Granger causality (GC) framework is widely used to understand
the relationships between different agents, as well as how these
relationships change over time. In this paper, we integrate the
knowledge of traffic and vehicle dynamics into the neural network
to learn the Granger causality and explore vehicular interaction
from multi-vehicle trajectories. The proposed algorithm has been
validated using both the INTERACTION dataset and field data
collected in Riverside, California. The results show that our algo-
rithm is able to address three key questions regarding vehicular
interaction: 1) whether the interactions exist between/among the
vehicles; 2) when the interactions occur and terminate; and 3)
how strong the interactions between/among vehicles are.

Index Terms—Vehicular interaction, Granger causality, Per-
sonalized behavior, Multi-agent system

I. INTRODUCTION

A. Motivation

In the foreseeable future, connected and automated vehicles
(CAVs) need to share the road and interact with other human-
driven vehicles in a mixed traffic environment, where a CAV
actively observes its surrounding vehicles’ states, predicts
other vehicles’ behaviors, makes decisions and executes the ac-
tion. Discovering the interaction pattern among vehicles from
the observed data can improve the prediction and decision-
making process, enabling CAV to better coordinate with its
surroundings in a safer and more efficient manner.

The increasing amount of vehicle trajectory data has led to
data-driven methods for automatically learning the interaction.
Most existing studies encode and learn the interaction among
agents implicitly as a middle layer of neural networks [1]–
[3], which undermines the interpretability and transferability
of the learned interaction model. In this study, we aim to
model interaction explicitly and address the questions of who
is involved in the interaction, when does the interaction occur,
and how to quantify it, with an interpretable data-driven model.
To identify the complex and implicit vehicle interaction, this
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study relies on the definition proposed by Markkula et al.
[4], who indicate that in an interaction, two or more vehicles
should be involved, should be influenced by each other, and
should have spatiotemporal conflicts with other vehicles.

Due to its interpretability, Granger causality (GC) [5] is a
practical method to analyze interactions on a set of time series,
especially for systems with nonlinear dynamics. Recently, it is
widely adopted in many fields, including neuroscience, social
media analysis, climate science, and econometrics [6], [7].
Similarly, exploring the interaction among vehicles based on
the trajectory can be considered a problem of multivariate time
series analysis. Therefore, in this paper, a GC-based approach
is used to explore the interactions among a multi-vehicles
system.

B. Literature Review

1) Data-driven vehicular interaction modeling: Many ve-
hicle interaction studies have been applied to extracting inter-
action patterns from observed vehicle trajectories. Considering
limited computational resources in real-time, Refaat et al. [8]
prioritized surrounding agents for the planning process, based
on their influence on the ego vehicle. Also, the attention
mechanism is a popular interaction encoding method as it can
evaluate the similarity or importance between vectorized series
[9]. To quantify the influence of others on ego vehicle, Leurent
and Mercat [10] calculated the attention value between ego
vehicle and its surrounding agents and hence improved the
prediction result. In addition to analyzing such influence, inter-
action study considers the mutual effect. Researchers [11]–[13]
modeled the vehicle interaction using graph neural network
(GNN), which can capture the correlation between nodes (i.e.,
vehicles) and encode the interaction intensity in the learnable
weights of graph edges. To capture both the influence and
interaction, graph attention networks (GAT) were adopted to
update the vehicle features by considering the influence from
other nodes [14]. However, supervised or semi-supervised
methods are limited by data labeling cost, and GNN is not
flexible in dynamic environments because the graph cannot
handle large variations in the number of nodes (i.e., agents)
[15]. Other researchers explored parametric methods such as
social value orientation (SVO) [16], [17] and inverse rein-
forcement learning (IRL) [18], [19] for understanding drivers’
interaction preference. Although these models are explainable,
they learn fixed parameters by using historical data and cannot
update in real time. Moreover, the aforementioned methods
cannot explicitly explain the interaction by addressing three
key questions related to ’who’, ’when’, and ’how’.
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2) Granger causality: Granger causality was developed
in 1969 by Granger [5] and now became one of the most
popular approaches for temporal causal discovery. This paper
adopted its general form for non-linear systems, and many
existing methods can be adapted into this form, such as vector
autoregression (VAR) [20] and deep learning methods [21],
[22].

Consider observing trajectories from N vehicles, and each
trajectory contains P features f across time span t =
{1, . . . , T}, i.e., X =

{
x1
<t, . . . , x

N
<t

}
, xi

t = {f1, . . . , fP }. A
non-linear function gi (e.g., nonlinear VAR) is used to capture
how the past of all N vehicles influences the ith vehicle, such
that

xi
t+1 = gi

(
x1
<t, . . . , x

N
<t

)
+ eit (1)

where eit is noise term. If gi is independent on other vehicle
xj
<t, vehicle xj

<t is irrelevant in the prediction of vehicle
xi. Then, the above can be concluded that [7] time series
xj is noncausal for time series xi, if and only if for all{
x1
<t, . . . , x

N
<t

}
and all xj′

<t ̸= xj
<t, such that

gi
(
x1
<t, . . . , x

j
<t, . . . , x

N
<t

)
= gi

(
x1
<t, . . . , x

j′
<t, . . . x

p
<t

)
(2)

However, false causality may be discovered by only relying
on data-driven GC. To improve the reliability of the model,
expert knowledge of the study field needs to be integrated
into the model. Moreover, instead of defining the system
mechanism [23], GC is usually used to investigate complex
systems that are difficult to be modeled and to provide a
system-level perspective of the interaction.

C. Contribution

In this paper, we claim the following key contributions:
• We propose an unsupervised data-driven approach to

model the multi-vehicle interaction, as one of the first
research that implements Granger causality on a vehicular
motion study;

• Regularized by social norms and road geometry, the
proposed explainable network is able to quantify the
interaction and can be validated in a reliable manner; and

• Besides the demonstration on the INTERACTION
dataset, the proposed algorithm is implemented on a per-
sonalized dataset and discovers personalized interaction
patterns for two drivers.

II. METHODOLOGY

In this study, we propose a framework to evaluate the
multi-vehicle interaction, which consists of a vehicle behavior
model based on potential field theory and a GC discovery
process. Similar to the vehicle interaction, movement ecology
also considers complicated perception, planning, and execution
process. By integrating a conceptual ecology behavioral model
[24], Fujii et al. [22] proposed a GC-based inference frame-
work to study the multi-animal interaction, and the perfor-
mance for GC discovery was validated in the labeled synthetic

dataset (e.g., nonlinear oscillator and boid model simulation)
and real-world animal dataset. But vehicle movement is more
constrained by the social norms (safe behavior) of human
drivers and road geometry. To include scientific knowledge
regularization, we apply potential field theory in Frenet coor-
dinate [25] to encode the social norms. Overall, as shown in
Fig. 1, the system inputs are the trajectories of all analyzed
vehicles, and the two outputs are the coefficient matrices of
GC values for interaction intensity evaluation and prediction
results of each vehicle provided by generalized vector autore-
gression (GVAR). Finally, the interaction intensity is quantified
by the strength of GC effect in the coefficient matrix, as they
explain how the past of other vehicles contributes to the future
of the evaluated vehicle.

A. GC Discovery using GVAR under SENN Structure

1) Self-explaining neural networks (SENN): A SENN [26]
represents a class of intrinsically interpretable models, and it
consists of a link function G(·) and interpretable basis h(x),
following the form:

f(x) = G (θ(x)1h(x)1, . . . , θ(x)kh(x)k) (3)

where x are predictors, θ(·) is a neural network with k
outputs. θ(x) is the coefficient for x and is used to explain
the contribution of each basis to prediction result f(x). After
simplification, Equation (3) can be written as:

f(x) =

p∑
j=1

θ(x)jxj (4)

2) Generalized vector autoregression: In a vehicle interac-
tion study, the trajectory of each involved vehicle is considered
as a basis to predict the target vehicle, and the contribution
of each basis ’explains’ the influence of each vehicle, which
is indicated by θ(x). SENN was applied to infer GC in
a multivariate system by Marcinkevics and Vogt [20], who
extended VAR to generalized vector autoregression (GVAR)
as the link function, and the GVAR is expressed as

xt =

K∑
k=1

Φθk
(xt−k)xt−k + εt (5)

where the Φθk
is a neural network parameterized by θk. Then

Φi
t,k = Φθk

(xt−k) is a coefficient matrix for lag k and time
t, and the element (i, j) of Φi

t,k is the influence of time step
xj
t−k on xi

t.
The dash-box in Fig. 1 illustrates the calculation for the

coefficient matrix Φi
t and prediction result using Equation (5)

with an order-K GVAR. The matrix Φi
t captures the influence

of other vehicle on vehicle i at time t, with fR, fN , and
fM representing the regulation, navigation, and movement
functions, respectively. These functions are introduced in the
following subsections. To obtain the whole coefficient matrix
for the whole group, the generalized coefficient matrix of N
vehicles are concatenated at each time step.
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Fig. 1. Generalized vector autoregression under self-explaining neural network structure for Granger causality discovery.

Therefore, the strength of the influence (i.e., GC effect [22])
between time series xi and xj can be explored by inspecting
the generalized coefficient matrix Φt = Φθk

(xt) , as Equation
(6):

GCi,j = signmax
1≤k≤K

K+1≤t≤T

 median
1≤k≤K

K+1≤t≤T

(Φθk
(xt))i,j


· max
1≤k≤K

{
median
K+1≤t≤T

(∣∣∣(Φθk
(xt))i,j

∣∣∣)} (6)

where signmax function outputs the sign of the number that
has the largest absolute value.

B. Vehicle Movement Model

To avoid problematic results (e.g., linking vehicles that
are too far apart) for vehicle interaction, the aforementioned
knowledge (i.e., social norms) needs to be incorporated into
the SENN-GVAR model. Instead of relying on one neural net-
work Φθk

in Equation (5), we decompose the vehicle move-
ment model into three processes to make the movement model
interpretable and reliable, including social norm regularization,
navigation, and planning processes (i.e., fR, fN , fM , respec-
tively, as the yellow blocks in Fig. 1 shows). Thus, the Φθk

in Equation (5) is extended to Equation (7). This subsection
discusses how each process in the vehicle movement model is
formulated and integrated into the GVAR model.

Φθk
(xt−k) = fRk

(xt−k)⊙ fNk
(xt−k)⊙ fMk

(xt−k) (7)



Ev = Miρ
e−β1a cos θ0

|k′| · k′

|k′|
Mi = mi

(
1.566× 10−14v6.687 + 0.3345

)
|k′| =

√[
(x∗ − x0)

τ
eαv

]2
+ [(y∗ − y0) τ ]

2[
x∗

y∗

]
=

[
cosϕ sinϕ
− sinϕ cosϕ

] [
x
y

] (8)

Fig. 2. Mapping object in Cartesian coordinate to Frenet coordinate.

1) Regularization process: The social regularization fR is
formulated to estimate the conflict level with surrounding
vehicles based on the region of interest (RoI) of the analyzed
vehicle. Driving safety is a critical factor in interaction studies,
and drivers are assumed to pay more attention to the con-
flicting vehicles that may pose a threat. Since the risk cannot
be simply evaluated by Euclidean distance, the potential field
becomes a powerful tool for social norm encoding [15] and
understanding how drivers perceive their surroundings. To
characterize the driving risk level for ego vehicle, Li et al.
[27] proposed a potential field equation for vehicle control,
whose parameters were calibrated with real-world data, as
shown in Equation (8). In this paper, the value of risk level
is adapted to estimate the RoI of the analyzed vehicle, by
proportionally expanding the field based on the 3-second rules
[28]. Besides the social norm, road geometry needs to be
included. Therefore, we calculate the RoI in Frenet coordinate,
instead of Cartesian coordinate. As shown in Fig. 2, vehicle
state (e.g., longitudinal position s(t) and lateral position d(t))
in Frenet coordinate is calculated based on the reference lane
(e.g., the center line of the lane). At each time step, Algorithm
1 generates an RoI for each vehicle as shown in Fig. 3, where
the red dot stands for the analyzed vehicle, and blue dash
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(a) RoI of the analyzed car in Frenet frame

(b) Conflict level of other vehicles within RoI

Fig. 3. An example of estimating the conflict level of surroundings based on
potential field theory.

lines and red dash lines are the reference lanes. Based on the
RoI, the conflict level of other vehicles can be estimated by
considering road geometry and the analyzed vehicle state.

2) Navigation and movement process: The navigation pro-
cess fN is a sign function to capture the car-following behavior
between ego vehicle i and vehicle j , and fN

(
xi,j

)
=

2σ
(
∆vi,j/wn

)
− 1, where σ is a sigmoid function, ∆vi,j is

the speed difference, and wn is a learnable coefficient. fN > 0
indicates attraction, i.e., the vehicle tries to close the car-
following gap, and fN < 0 means repulsion, i.e., the opening
gap behavior. The movement process f i

M is constructed by
two-layer MLPs for each order and vehicle.

The loss function for training the whole GVAR consists of
mean square prediction error (MSE), sparsity-inducing penalty
[29] (i.e., Ls = α ∥Φt∥1+(1−α) ∥Φt∥2F ), and a theory-guided

regularization term LTG from [22]. LTG is adopted with the
assumption that the vehicle goes straight following the center
line from the current state if no interaction is detected, as
shown in Equation (9). The whole loss function can be written
by Equation (10).

LTG (Φt) = exp
(
∥xt − x̃t∥22 /η

)∥∥Φ′
t

∥∥2
t

(9)

where the x̃t is the intuitive prediction (i.e., assuming vehicle
stays on the center line with a deviation constrained by a
threshold η.), Φ′

t is the coefficient matrix regarding others by
excluding the weights for ego vehicle from Φt.

L =
1

T −K

T∑
t=K+1

(
∥xt − x̂t∥22 + λLs + γLTG

)
(10)

C. Permutation Feature Importance for Causality Validation

The cause discovered by GC is the potential cause, which
needs to be validated. Besides the visualization of GC value
(presented in Section III), we use permutation feature impor-
tance (PFI) [30] to validate the proposed data-driven method
without ground truth for interaction. PFI measures a method
for determining the importance of a feature in a machine
learning model, and similarly, it is used to understand the
contribution of a vehicle to the overall prediction. It works
by randomly shuffling the values of the trajectory of the target
vehicle, and measuring the change in the model’s performance.

On the other hand, PFI is a powerful technique to validate
the result of GC. Since causality discovery relies on temporal
information, the permutation process can remove chronologi-
cal information and causal relation between the target vehicle
and the rest of the system, before re-sending the data into
the GC-based network. Also, PFI introduces no confounding
factor to affect the prediction, as permutation does not change
the distribution of the dataset. The validation process based
on PFI is described in Algorithm 2.

III. CASE STUDY AND RESULT ANALYSIS

In order to validate the proposed GC-based vehicle inter-
action modeling approach, we studied the vehicle interaction
in a real-world on-ramp merging scenario, which requires the
coordination of lateral and longitudinal control from drivers,
making it a highly interactive and conflicting scenario. In this
section, the proposed algorithm reveals how the studied vehicle
influences others and is influenced in a four-vehicle merging
scenario. Moreover, the algorithm recognizes the personalized
interaction patterns of two drivers with different driving styles,
using their historical datasets.

A. Vehicular interaction interpretation Using INTERACTION
dataset

Among various datasets, we demonstrate the proposed algo-
rithm on the INTERACTION dataset [31], which provides HD
maps and motions of all vehicles which may influence driving
behavior. Trajectories of each vehicle include the timestamp,
position (x, y), speed (vx, vy), and heading angle. The selected
ramp merging scenario is presented in Fig. 4, where the center
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Fig. 4. On-ramp merging scenario from INTERACTION dataset.

lines of the ramp and mainline are extracted from the HD map,
and a four-vehicle group is chosen as the study case.

Once Φ′
θk

in Equation (7) is trained, the vehicular inter-
action intensity (GCi,j) can be assessed by Equation (6).
The four-vehicle interaction during the merging process is
elaborated in Fig. 5. Fig. 5(a) presents four key events during
the merging, where the blue and red dash lines are the ramp
and mainline, respectively. Vehicles are numbered based on
their appearance order with tails of past 1.5 seconds (15-
time steps), and a longer tail implies higher speed. The GCi,j

throughout time is described in 5(b), e.g., (i, j) graph is the
influence of vehicle #i on vehicle #j. A positive value means
attraction and following, while a negative value stands for
repulsion and implies that rather than reacting to another’s
action, the agent tends to take the lead. Moreover, in each
graph, four vertical dash lines mark the four key events in
5(a) correspondingly.

The blue solid line in 5(b) shows that the proposed algo-
rithm can detect the most interactive at each time step for each
vehicle. At t=24, vehicle #4 joins the group with a higher
speed (longer tail). According to graph (4,1) in 5(b), #4 is
significantly affected by #1 since it has to slow down and
follows #1. Also, #4 competes for the merging priority with
#3 and tries to lead #3, and this movement is reflected on
both graph (4,3) and (3,4). At the same time, #2 is taking the
lead over #4 and shows a strong will to compete. At t=108,
since #1 speeds up and leaves everyone behind, its influence
on others decreases, and others have little influence on #1. At
the moment, #2 takes #4 as the most important competitor and
accelerates, while most of #4’s attention is on #3. When t=171,
the competition of merging order is settled, so the interaction
intensity among vehicles becomes more stable, except for #2,

TABLE I
PERMUTATION FEATURE IMPORTANCE (PFI) ANALYSIS

Vehicles #1 #2 #3 #4
Influence Level∗ 312.18 327.81 390.99 434.45
Final Epoch Loss 1.39
Permutation Loss 1.02 1.27 1.73 2.04
Quotion− PFI 0.66 0.91 1.25 1.46

∗ A vehicle’s overall influence level is measured by the sum of its GC
value over time and GC values of other agents, i.e., the influence level of
xi is

∑N
j∈N,j ̸=i

∑T
t

∣∣GCij
∣∣

which starts merging into the mainline and needs to maintain
a safe car-following gap to #1. At t=221, the last vehicle #3
finishes its merging. The answer to who involves in interaction
and when the interaction happens can be solved by setting an
intensity threshold, based on algorithms that distinguish the
difference between non-interactive state and interactive state.

As the baseline, GVAR has no information about the road
constraint and social norms in traffic and generates counter-
intuitive results, as the orange dash line in Fig.5(b) shows.
For example, GVAR misjudges that the far upstream vehicles
affect #1, as in graph (1,3) (1,4) (2,3). In addition, although #3
increases the car-following gap to #2 and switches to follow
#4 at t=108, the effect of #2 on #3 is maintained till the end
by GVAR, as in graph (3,2). Moreover, GVAR ignores the
perception limitation of #3 and identifies an increasing effect
of #1 on #3 at the end of the graph (3,1), even though there
are two vehicles in between.

The contribution of each vehicle to the system prediction
is indicated by its PFI value, as listed in Table I. A vehicle’s
PFI value aligns with its GC value. In other words, if the
influence (measured by its GC) level is higher over time, its
PFI is higher. For instance, #1 contributes the least, so both
values of its GC and PFI are low. On the other hand, the PFI
values of #4 are the highest since it interacts with both #2
and #3. It should be noted that a vehicle’s GC value does not
include its contribution to its own prediction, therefore, there
is no linear mapping relationship between GC and PFI.

B. Personalized interaction pattern discovery

Understanding how individuals interact with other vehicles
and the interactions differ from each other allows engineers
to design personalized vehicles that better meet the needs
and preferences of different drivers. To study the personalized
interaction behavior, we implement the proposed algorithm
on a personalized dataset of two drivers from our previous
study [32]. The dataset was collected in ramp merging field
experiments that are carried out at an on/off-ramp section
along Columbia Ave., Riverside, CA. The experiment created
merge interactions between a ramp vehicle and a mainline
vehicle and collected 20 merging trips for each studied ramp
driver and an anonymous mainline driver. In the driver be-
havior analysis, Driver 1 was found to be more conservative
and usually merged behind the mainline vehicle. In contrast,
Driver 2 was more aggressive and always accelerated to merge
in front of the mainline vehicle.
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Fig. 5. Interaction process during a four-vehicle merging. (a) Key moments during the merging process. (b) Interaction intensity among vehicles.

Fig. 6 illustrates the personalized interaction pattern during
ramp merging trips for these two drivers. The red line is
the average interaction intensity for the studied ramp driver,
and the blue line is for the conflicting mainline driver. For
conservative Driver 1 in 6(a), the interaction between two
drivers is mild, with a maximum intensity value of 0.41. The
positive intensity value of Driver 1 shows an attraction to
the mainline vehicle, which leads the movement of Driver 1.
Compared to Driver 1, Driver 2 involves stronger interactions
in 6(b), where the maximum absolute intensity is 0.92, and
the intensity variance is much larger than Driver 1’s. For most
of the time, the interaction intensity of Driver 2 is negative,
since Driver 2 prefers to take the lead and merge in front.

IV. DISCUSSION

Implications. The goal of this study is to provide an inter-
pretable data-driven method to discover the interaction pattern
from observed vehicle trajectories. As a result, the mutual
influences among vehicles are quantified by the strength of the
GC effect, and we are able to answer the unsettled questions
of who, when, and how for interaction study. The proposed
method in this paper lays a solid foundation for a suite of
downstream applications, including multi-vehicle trajectory
prediction, traffic organization, and motion planning. For ex-
ample, this method can be used as an automatic data labeling
tool to encode interaction information into the neural networks
for prediction purposes. Also, if the interaction intensity is too
high, traffic control (e.g., ramp metering) can be implemented
to relieve the competition among vehicles considering safety.
Finally, personalized interaction can be studied for specific
drivers by following this protocol. Knowing the personalized
interaction preference can help customize the vehicle setup
for a personalized advanced driver assistance system, enabling
the vehicle to interact with others in dynamic environments.
Moreover, modeling personalized interaction contributes to
driving style recognition and personality inference [33].

Limitations. One obvious shortcoming of using GC is that
the VAR-based prediction methods cannot capture long-term

(a) Aggregated interaction pattern of conservative ramp car driver 1

(b) Aggregated interaction pattern of aggressive ramp car driver 2

Fig. 6. Personalized interaction pattern analysis in ramp merging scenario.

temporal dependency whenever GC takes the advantage of
VAR’s simple structure. Similar to other unsupervised meth-
ods, validating the interaction without ground truth is still
challenging. Toward this end, Granger causality is not the real
cause, and the result may not be the only cause. However,
it can be used as an analytical tool to reveal the interaction
within a system.
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V. CONCLUSIONS

In this paper, we quantify the multi-vehicle interaction
using an explainable data-driven approach, which is one of
the first implementations of Granger causality on vehicle
motion study. To improve accuracy and interpretability, the
proposed approach integrates social norms and road geometry
into the network. An on-ramp merging scenario with real-
world data is used to demonstrate the algorithm performance,
and permutation feature importance is used to validate the
result for this unsupervised algorithm. Finally, the algorithm is
implemented on a personalized driving dataset for personalized
interaction pattern recognition.

As the first few GC implementations in the vehicle move-
ment domain, there are many future directions worth ex-
ploring. For example, the interaction between vehicles and
infrastructure (e.g., traffic lights and traffic signs) can be
considered since the movement of vehicles is also influenced
by static objects on road. We will use the proposed method as
a data labeling tool for network training to enable interaction-
aware prediction. Discovering personalized interaction patterns
for P-ADAS development can be also one of our future studies.
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[20] R. Marcinkevičs and J. E. Vogt, “Interpretable models for granger
causality using self-explaining neural networks,” arXiv preprint
arXiv:2101.07600, 2021.

[21] A. Tank, I. Covert, N. Foti, A. Shojaie, and E. Fox, “Neural granger
causality for nonlinear time series,” stat, vol. 1050, p. 16, 2018.

[22] K. Fujii, N. Takeishi, K. Tsutsui, E. Fujioka, N. Nishiumi, R. Tanaka,
M. Fukushiro, K. Ide, H. Kohno, K. Yoda et al., “Learning interaction
rules from multi-animal trajectories via augmented behavioral mod-
els,” Advances in Neural Information Processing Systems, vol. 34, pp.
11 108–11 122, 2021.

[23] A. B. Barrett and L. Barnett, “Granger causality is designed to measure
effect, not mechanism,” Frontiers in neuroinformatics, vol. 7, p. 6, 2013.

[24] R. Nathan, W. M. Getz, E. Revilla, M. Holyoak, R. Kadmon, D. Saltz,
and P. E. Smouse, “A movement ecology paradigm for unifying or-
ganismal movement research,” Proceedings of the National Academy of
Sciences, vol. 105, no. 49, pp. 19 052–19 059, 2008.

[25] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frenet frame,” in 2010 IEEE
International Conference on Robotics and Automation. IEEE, 2010,
pp. 987–993.

[26] D. Alvarez Melis and T. Jaakkola, “Towards robust interpretability
with self-explaining neural networks,” Advances in neural information
processing systems, vol. 31, 2018.

[27] L. Li, J. Gan, K. Zhou, X. Qu, and B. Ran, “A novel lane-changing
model of connected and automated vehicles: Using the safety potential
field theory,” Physica A: Statistical Mechanics and its Applications, vol.
559, p. 125039, 2020.

[28] C. D. of Motor Vehicles, “Vehicle positioning,” 2021. [Online].
Available: https://www.dmv.ca.gov/portal/es/handbook/california-driver-
handbook/vehicle-positioning/

[29] W. B. Nicholson, D. S. Matteson, and J. Bien, “Varx-l: Structured reg-
ularization for large vector autoregressions with exogenous variables,”
International Journal of Forecasting, vol. 33, no. 3, pp. 627–651, 2017.

[30] L. Breiman and A. Cutler, “Random forests,” Machine learning, vol. 45,
no. 1, pp. 5–32, 1994.

[31] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kum-
merle, H. Konigshof, C. Stiller, A. de La Fortelle et al., “Interaction
dataset: An international, adversarial and cooperative motion dataset
in interactive driving scenarios with semantic maps,” arXiv preprint
arXiv:1910.03088, 2019.

[32] X. Liao, X. Zhao, Z. Wang, Z. Zhao, K. Han, R. Gupta, M. J. Barth,
and G. Wu, “Driver digital twin for online prediction of personalized
lane change behavior,” IEEE Internet of Things Journal, 2023.

[33] X. Liao, S. Mehrotra, S. Ho, Y. Gorospe, X. Wu, and T. Mistu, “Driver
profile modeling based on driving style, personality traits, and mood
states,” in 2022 IEEE 25th International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2022, pp. 709–716.

Authorized licensed use limited to: UCLA Library. Downloaded on February 09,2024 at 22:32:17 UTC from IEEE Xplore.  Restrictions apply. 


