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Abstract—This perspective paper delves into the concept of
foundation intelligence that shapes the future of smart infrastruc-
ture services as the transportation sector transitions into the era
of Transportation 5.0. First, the discussion focuses on a suite of
emerging technologies essential for foundation intelligence. These
technologies encompass digital twinning, parallel intelligence,
large vision-language models, traffic simulation and transporta-
tion systems modeling, vehicle-to-everything (V2X) connectivity,
and decentralized/distributed systems. Next, the paper introduces
the present landscape of Transportation 5.0 applications as
illuminated by the foundational intelligence, and casts a vision
towards the future including cooperative driving automation,
smart intersection/infrastructure, parallel traffic management,
virtual drivers, and mobility systems planning and operations,
laying out prospects that are poised to redefine the mobility
ecosystem. Last, through a comprehensive outlook, this paper
aspires to offer a guiding framework for the intelligent evolution
in data generation and model calibration, digital twinning and
simulation, scenario development and experimentation, feedback
loop for management and control, and continuous learning and
adaptation, fostering safety, efficiency, reliability, and sustainabil-
ity in the future smart transportation infrastructure.

Index Terms—Foundation Intelligence, foundation models,
smart infrastructure, transportation 5.0.

N the ever-evolving landscape of transportation, we now
stand at the brink of a revolutionary era, commonly
referred to as Transportation 5.0 [1]-[6]. This new
phase signifies a leap forward, delving into an integrated

system where advanced technologies play a pivotal role [7] [8].
At the core of this transformative wave is what we term smart
infrastructure services [9].

Smart infrastructure services refer to the enhanced capabil-
ities of transportation infrastructure systems when equipped
with cutting-edge technologies for sensing, decision-making,
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and control. These services are not just improvements. They
are transformative elements that redefine how infrastructure
interacts, responds and evolves. The infrastructure becomes
smart via leveraging technologies such as Artificial Intel-
ligence (AI) [10] [11], the Internet of Things (IoT) [12]-
[14], digital twins, metaverses, distributed autonomous oper-
ations (DAO) [15], and parallel computing. This foundation
intelligence allows it to provide real-time, or near real-time,
responses and decision-making, predictive maintenance, and
adaptive solutions, ensuring efficiency, safety, equity, and
sustainability. In the context of smart infrastructure services
of this paper, Foundation Intelligence refers to the core Al-
driven principles and technologies forming the base layer of
smart infrastructure systems. This includes using fundamental
intelligence concepts such as cognitive processes and decision-
making, applied through advanced AI and data analytics.
It encompasses the integration of digital twinning, parallel
intelligence, large Al models, and distributed systems to create
dynamic, predictive transportation infrastructure. Foundation
Intelligence thus forms the critical groundwork, enabling the
development of responsive, efficient, and future-focused smart
transportation systems.

Particularly, smart infrastructure services go beyond tradi-
tional infrastructure by actively interacting with humans partic-
ularly vulnerable road users (VRU) consisting of pedestrians,
cyclists, and wheelchairs, vehicles, roads, and the environment.
These interactions will provide a foundation to achieve better
safety, efficiency, and sustainability for the transportation
system. We compiled an example list of potential smart
infrastructure services, which encompass interactions from the
perspectives of humans, vehicles, roads, and the environment.

o Human Interactions. Personalized Travel Recommen-
dations: Smart infrastructure can interact with individuals
through personal devices such as mobile apps or other
communication systems to provide personalized travel
recommendations, suggesting efficient routes, modes of
transportation, and timing based on individual preferences
and real-time traffic conditions [16]. VRU Safety Alerts:
For VRUs, smart infrastructure is capable of offering
safety alerts and notifications through personal devices
such as wearable devices. For instance, it can warn
pedestrians about approaching vehicles or guide them
to crosswalks with the best visibility [17], [18]. Ac-
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cessible Infrastructure: Smart infrastructure can provide
accessibility services for people with disabilities, such as
audible traffic signals, tactile crosswalk indicators, and
real-time information about accessible routes, ensuring
inclusivity for all. Health and Wellness Support: By
collecting data on air quality, noise levels, and traffic con-
gestion, smart infrastructure can provide health-related
recommendations to individuals, suggesting alternative
routes or modes of transportation to minimize exposure
to environmental hazards.

o Vehicle Interactions. Smart Sensing and Real-Time In-
formation: By installing sensors like cameras, LiDARSs
and radars, the infrastructure can detect and track di-
verse road users. This data is sent to vehicles and
VRUs, enhancing their awareness and decision-making.
Infrastructure-Controlled Vehicle Trajectories: When au-
tomated vehicles approach intersections, the infrastruc-
ture can take over navigation. This allows for optimized
trajectories, either in a centralized or decentralized man-
ner, maximizing intersection capacity and reducing emis-
sions [19]. Traffic Management During Special Events or
Extreme Weather: With a comprehensive understanding
of traffic patterns and conditions, smart infrastructure
can develop strategies for effective traffic management,
ensuring smooth flow and safety [20]. Emergency Re-
sponse Coordination: In case of incidents or emergencies,
smart infrastructure can coordinate with response teams,
providing them with real-time information and the best
routes, thus reducing response times.

o Road Interactions. Automated Road Maintenance:
Smart infrastructure can monitor road conditions in real-
time, identifying potholes, cracks, or signs of wear.
Automated maintenance systems can then be activated to
repair or maintain the road surface, improving safety and
reducing maintenance costs. Traffic Flow Optimization:
By analyzing traffic patterns and road conditions, smart
infrastructure can optimize traffic signal timings, lane
management, and speed limits to maximize traffic flow
and minimize congestion [21]. Dynamic Lane Alloca-
tion: Smart infrastructure can dynamically allocate lanes
based on traffic demand. For instance, during rush hours,
extra lanes can be designated for high-occupancy vehicles
or buses, while the number of lanes available for private
vehicles can be adjusted accordingly [22].

+ Environment Interactions. Environmental Monitoring
and Response: Smart infrastructure can include sensors
to monitor air quality, temperature, humidity, and noise
levels. This data can be used to assess the environ-
mental impact of transportation activities and trigger
alerts or interventions when pollution levels exceed ac-
ceptable thresholds. Energy Management and Opti-
mization: Through smart lighting and energy-efficient
designs, infrastructure can reduce energy consumption
and contribute to sustainability. Ecosystem Protection: In
environmentally sensitive areas, the smart infrastructure
can detect wildlife crossings and migratory patterns,
triggering traffic management measures like temporary
road closures or reduced speed limits to protect wildlife

and their habitats.

These service examples represent the diverse capabilities of
smart infrastructure in creating a more responsive, efficient,
and user-friendly transportation system. As we delve deeper
into this discussion, it’s crucial to understand the breadth
and depth of smart infrastructure services in the context of
Transportation 5.0 [1]. Their role is not just functional; it’s
transformative, paving the way for a future where transporta-
tion systems are not just conduits but intelligent partners in
our daily lives. As part of the specialized research initiative:
Scenarios Engineering for Smart Mobility (SE4SM) in [9],
this perspective paper discusses the foundation intelligence
that enables these smart infrastructure services.

Foundation Intelligence of Smart Infrastructure Services

The foundation intelligence of smart infrastructure services
in Transportation 5.0 is a rich tapestry of enabling foundation
technologies [23]. The core technologies of the foundation
intelligence for smart infrastructure services are discussed in
this section.

Digital Twinning and Parallel Intelligence: The integra-
tion of physical and virtual worlds through digital twins creates
a dynamic and interactive environment. This integration is not
just about replicating physical entities in a virtual space (like
a regular simulation development) but involves a synergistic
relationship where each realm enhances the other. In the
physical world, real-world data and experiences are captured
and fed into the virtual environment. This can include traffic
patterns, environmental conditions, and infrastructure usage. In
the virtual world, this data is processed, analyzed, and used to
simulate different scenarios and outcomes. These simulations
can test the efficiency of vehicle decisions, traffic management
systems, the impact of new infrastructure, or emergency re-
sponse strategies. The knowledge created in the virtual world
by running various scenarios is able to inform decisions in
the physical world. For example, in traffic management, a
digital twin of a city’s road network could simulate traffic
flow under various conditions. By analyzing these simulations,
city planners will create a knowledge base or playbook that
can be used to derive the best management strategies under
diverse real-time conditions. [24], [25]. However, in this
regard, high computational demands, data privacy concerns,
and integration complexity with existing systems are the main
challenges. To tackle these problems, potential solutions can
be developing more efficient algorithms, enforcing strict data
privacy protocols, and designing modular systems for easier
integration [26].

Large AI Foundation Models: The advent of extensive
Al models, such as language, vision, and integrated vision-
language models (LLM, LVM, VLM), has revolutionized data
processing and interpretation. These models provide deep
insights and predictive capabilities, essential for smart infras-
tructure [27]. Notably, these Al models can access and learn
knowledge of all aspects of transportation, such as traveler
choices and activity patterns, driving behavior, interaction
patterns between VRUs and vehicles, and optimal traffic
control strategies for each traffic pattern. For instance, in traffic
management, a VLM can analyze real-time traffic camera
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footage alongside social media posts or news reports about
traffic conditions. This integrated analysis can identify and
predict traffic congestion or incidents more accurately, facili-
tating quicker response and management. Additionally, VLMs
can interpret complex scenarios by combining visual data
with linguistic context, enhancing decision-making processes
in dynamic environments like urban traffic systems. It is worth
mentioning that the utilization of Large Foundation Models
in Al poses challenges related to ethical considerations, the
potential for biases in Al models, and the significant data
requirements for training. To mitigate these challenges, it is
crucial to implement ethical AI guidelines, conduct regular
bias audits, and leverage diverse data sources to ensure fairness
and reliability in Al systems.

Advanced Digital World Modeling: Digital World Model-
ing is crucial for autonomous driving and smart infrastructure
management, necessitating high-definition (HD) maps for ac-
curate operation and safety. Traditional map-making methods,
which include collecting sensor data using specialized vehicles
equipped with LiDAR, cameras, radar, inertial measurement
units, and global navigation satellite systems, are often costly
and difficult to scale [28]. These maps typically comprise
different forms such as vector maps for semantic information
detailing the traffic rule and road structure and point cloud
maps for geometric details shown in Fig.l1. In autonomous
driving, detailed mapping is essential for localization and
object detection and tracking, while in smart infrastructure,
it plays a pivotal role in creating digital twins, testing, and
identifying and monitoring vulnerable road users. However,
the static nature of these maps (road structure layer and 3D
geometry layer) and the labor-intensive process for annotation
and road structure correction of their creation pose scalability
challenges. In addition, to improve the presentation of the
environmental texture within higher resolution, emerging neu-
ral rendering approaches like Neural Radiance Fields (NeRF)
offer a promising solution [29]. NeRF enables the efficient and
scalable creation of high-fidelity 3D models by interpreting
light and color in a scene, resulting in lifelike renderings. This
approach has been demonstrated effectively in projects like
StreetSurf, which achieved nuanced reconstruction of street
scenes, and MARS, which utilized NeRF for developing an
autonomous driving simulation engine [30]. These applications
underscore NeRF’s capacity for rendering complex urban
landscapes with high fidelity, an essential feature for detailed
mapping in autonomous driving and smart infrastructure appli-
cations. However, NeRF faces challenges in processing speed
and computational computation load especially when dealing
with large-scale urban environments. In addition, on the scale
of transportation systems and networks, virtual world models
necessitate various dynamic information layers, such as traf-
fic, road, and environmental conditions. These layers ideally
should encompass both current and future predictive data. To
achieve the dynamic update of HD maps, specialized HD
map companies such as NVIDIA leverage feet-sourced data
which represents the collective memory of numerous vehicles
to generate maps with dynamic and behavioral information
about the environment [28] and instant update when changes
occur.

What’s more, challenges faced by these world models in-
clude data variability, quality issues, and the need for real-time
updates. Unlike the rich environmental data in autonomous
driving, traffic, and travel data often lack spatial and temporal
density. To improve estimations and predictions, diverse data
sources like traffic detectors, travel surveys, trajectories, and
social media are utilized and NeRF has good potential to
improve the HD mapping by creating more dynamic, up-
to-date maps. Emerging solutions focus on integrating these
varied data sources to more accurately represent both current
and future states of transportation networks, thereby enhancing
decision-making and operational efficiency [31], [32].
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Fig. 1. High definition map structure.

Traffic Simulation and Transportation System Models:
To some extent, these models are foundation models for
transportation systems. Various macroscopic and microscopic
traffic models, such as Greenshelds [33], Newell [34], and
Intelligent Driver Model [35], as well as variations and com-
mercial simulators that integrate these models, are a unique
contribution of the conventional traffic modeling community
here. These fine models usually aim to describe traffic behavior
in parsimonious mathematical and logical forms and present
themselves as very neat tools in any modern vehicular and
traffic models. These traffic simulation and transportation
system models, historically handcrafted, are also evolving.
Data-driven approaches are reshaping these models, making
them more dynamic and reflective of real-world scenarios
[36], [37]. For instance, smart infrastructure can learn usual
driver behavior continuously such that traffic and automated
vehicle control can be more customized to learned local driver
behavior. However, maintaining the accuracy and relevance
of Traffic Simulation and Transportation System Models in
the face of changing urban dynamics can be challenging.
Digital twinning and parallel computing can help continuously
enhance these models on the fly. Additionally, issues related
to scalability and data accuracy must be addressed. Attention
needs to be paid to solutions involving incorporating real-time
data feeds to keep models up-to-date, adopting scalable cloud-
based solutions for improved performance, and utilizing high-
quality data sources for accuracy.

Connectivity Technologies: The fourth critical technology
is connectivity, particularly wireless communication. V2X

Authorized licensed use limited to: UCLA Library. Downloaded on February 05,2024 at 01:23:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3349324

IEEE Transactions on Intelligent Vehicles

(vehicle-to-everything) technologies, encompassing vehicle-to-
everything communications like V2V (vehicle-to-vehicle), V2I
(vehicle-to-infrastructure), V2P (vehicle-to-presestrian/VRU),
and V2Cloud (vehicle-to-cloud), are pivotal. They enable a
plethora of connectivity-driven applications, enhancing the
responsiveness and interactivity of transportation systems [38].
However, implementing V2X communication isn’t without
challenges. Issues like network delays, system compatibility,
and cybersecurity threats need addressing. To tackle these
problems, it’s crucial to invest in superior network infras-
tructure and establish universal communication standards. It
is equally important to bolster cybersecurity to protect these
interconnected systems.

Decentralized Systems: Lastly, Decentralization technolo-
gies, particularly blockchain and smart contracts, are rapidly
emerging as transformative forces. They enable distributed
control and management across various entities such as ve-
hicles, pedestrians, and infrastructure components. This shift
towards decentralization not only enhances operational effi-
ciency but also significantly improves cybersecurity, thereby
fortifying the entire intelligent infrastructure ecosystem. For
instance, traditional centralized approaches to managing net-
work traffic flow and vehicle trajectories often face scala-
bility issues and are vulnerable to single-point failures. In
contrast, decentralized systems offer a more resilient and
scalable solution, distributing decision-making processes and
data validation across multiple nodes. This can be particularly
effective in complex urban environments where managing
dynamic traffic patterns and diverse transportation modes
requires agility and robustness. Additionally, in the realm of
infrastructure services, ensuring the authenticity and integrity
of data is paramount. Decentralized systems, through mech-
anisms like smart contracts, can provide a novel means of
verifying and certifying the validity of information exchanged
within the network. Smart contracts can automate compliance
and enforcement of rules and policies, thereby enhancing
trust and transparency in the system. For example, in toll
collection or congestion pricing, smart contracts can facil-
itate automatic, transparent, and tamper-proof transactions.
Moreover, decentralized systems can revolutionize areas like
parking management, where they can enable peer-to-peer
parking space sharing, optimized through real-time data and
automated payments. In public transit, blockchain can be used
to streamline fare collection, reducing fraud and improving
the efficiency of revenue management. However, implementing
these decentralized systems is not without challenges. Issues
such as ensuring interoperability between diverse technologies,
managing the energy consumption of blockchain operations,
and establishing regulatory frameworks that address privacy
and data ownership concerns are critical hurdles that need to
be addressed.

Together, these technologies form the backbone of foun-
dation intelligence in Transportation 5.0. They are not just
individual pieces but interconnected elements that collectively
drive the evolution and efficiency of smart infrastructure
services. Fig. 2 shows an integrated diagram of infrastructure
intelligence of a parallel nature between the physical and
artificial systems. The physical systems include not only the

transportation infrastructure (such as roadways, sensors, and
traffic signal heads) but also the humans (travelers and drivers)
that are heterogeneous and exhibit different behaviors. The
artificial systems are digital twins of the real world. Offline
data from the real world can be used initially to develop the
digital replica and future streaming data can be used continu-
ously fine-tuning the digital replica. The artificial systems can
include how vehicles interact with each other, how travelers
make decisions, and how sensors can capture the surrounding
environment under different conditions.

The lower part of Fig. 2 shows three key components
that run parallel in both physical and artificial systems. The
Scenarios Engineering in the middle of Fig. 2 as an integrated
reflection of the scenarios and activities within a certain
temporal and spatial range, where all actionable artificial
systems are encouraged to complete the design, certification,
and verification [23]. These diverse scenarios can vary from
multi-modality sensing, freeway, and smart intersection for the
artificial system life cycle to determine suitable models after
system testing. Specifically, in artificial systems, experiments,
and corresponding evaluations will be performed under diverse
scenarios (via scenario engineering [23]) and this will form the
foundation knowledge for the artificial systems, which can
be transferred and applied in physical systems. Continuous
learning and adaptation will ensure the trustworthy calibration
and certification of the artificial systems [23]. It is also worth
mentioning that the smart infrastructure services will work in
the decentralized system framework in the smart infrastructure
to achieve efficient and reliable performance.

Transportation 5.0 Applications with Foundation Intelligence
in Smart Infrastructure Services

Over the years, the authors have been dedicated to prototyp-
ing such parallel intelligence for transportation 5.0 at various
scales. This section introduces multiple representative system
prototypes.

A. Cooperative Driving Automation and Smart Intersection

As shown in Fig. 2, smart infrastructure services consist
of major components including management and control,
experiments and evaluation, and learning and training. Among
the technologies, the UCLA Mobility Lab pioneers in cooper-
ative driving automation (CDA) and smart infrastructure with
tremendous experience [2] [9]. Specifically, OpenCDA-ROS
[9], building on the strengths of an open-source framework
OpenCDA [2] and the Robot Operating System (ROS) has
been introduced to seamlessly synthesize ROS’s real-world
deployment capabilities with OpenCDA’s [2] mature CDA
research framework and simulation-based evaluation to fill
the gaps aforementioned. OpenCDA-ROS leverages the ad-
vantages of both ROS and OpenCDA to boost the prototyping
and deployment of critical CDA features in both simulation
and the real world, particularly for cooperative perception,
mapping and digital twinning, cooperative decision-making
and motion planning, and smart infrastructure services. By
offering seamless integration of simulation and real-world
CDA, OpenCDA-ROS contributes significantly to foundation
intelligence for smart infrastructure services.
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Fig. 3. UCLA Smart Intersection Pipeline.

As an instantiation of the smart infrastructure services via
the application of OpenCDA-ROS, the UCLA Mobility Lab
has developed a CPSS (cyber-physical social system), in other
words, a safety-orientated smart intersection safety system by
leveraging the advanced sensors, C-V2X (cellular V2X) com-
munication technology, and state-of-the-art deep learning ap-
proaches. The framework shows an all-weather multi-modality
smart intersection system in Fig. 3. It follows a widely used
and validated software pipeline for automated driving which
includes sensing, cooperative perception, decision-making, and
actuation. The combination of cameras, radars, and LiDARs
is used to implement the multi-modality sensor-fusion-based
environmental perception using advanced deep learning artifi-
cial intelligence algorithms in particular for the VRU detec-
tion, tracking, and future trajectories prediction under diverse

weather and visibility conditions with the incorporation of
weather adaptation methods. Then, based on the VRU and
vehicle-predicted trajectories, the potential conflict or collision
will be evaluated based on machine learning algorithms. De-
pending on different levels of severity, the warning system will
send the corresponding alert through multi-modal approaches
including haptic, visual, audio, and V2X communications to
allow both the connected or non-connected VRUs and vehicles
to perceive the potential conflict in a redundant manner. To
ensure the holistic work reliably, a health monitoring system
is developed to monitor the hardware and software running
in the edge computing system. The digital twin of smart
intersections also plays a critical role in making such functions
possible, by collecting offline simulation data of a large
number of scenarios perception and decision-making and then
corresponding training the corresponding modules throughout
the pipeline. Online performance evaluations are also being
performed in the digital twins to continuously enhance the
model performance at the deployed location to better adapt to
local conditions. Through the smart infrastructure services by
this CPSS, traffic efficiency and safety can be regulated and
bolstered.

B. Cooperative Traffic Control and Management

The connected automated vehicles (CAV) technology offers
new opportunities for smart intersection management. In the
smart intersection system in Fig. 3, cooperative perception
can be achieved for comprehensive environment understand-
ing, and individual trajectories of CAVs can be precisely
controlled. Ideally, once CAVs enter a certain proximity of
the intersection (best control range, e.g., 250 meters), the
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intersection can take over or intervene with the vehicle trajec-
tory control, in a decentralized/distributed manner, for traffic
flow optimization. In one of our earlier studies, the real-
time learning and control framework in [39] for signalized
intersection management includes both signal optimization and
CAV trajectory control. The cooperative perception, predic-
tion, planning, and optimization components are integrated
aiming at improving efficiency mixed connected automated
traffic in terms of traffic throughput and delay. The long
short term memory (LSTM) networks can implicitly learn
traffic patterns and driver behavior and then estimate and
predict the microscopic traffic conditions that are only partially
observable. Deep reinforcement learning (DRL) is applied
to solve signal optimization problems by learning from the
dynamic interactions between vehicles and the traffic environ-
ment in the offline simulation of the artificial world under
different scenarios (e.g., traffic conditions, vehicle arrival
patterns, CAV penetration rates). Through the framework, the
vehicular trajectories of CAVs can be controlled to maximize
the utilization of green time and reduce the start-up lost
time by using a highly efficient trajectory planning algorithm.
The CAV platooning operation, in coordination with traffic
signals, has been deployed such that CAVs can pass the
intersection efficiently. The framework prototype of integration
of the CAVs and their trajectories management through the
smart infrastructure services as indicated in the Foundation
Intelligence Technologies in Transportation 5.0 section.

C. Human Driver Digital Twin

Central to this system is the development of Driver Digital
Twins (DDTs) [40] and Vehicle Digital Twins (VDTs) [41],
digital replicas that learn from and continuously synchronize
with their physical counterparts. These digital twins form the
base of a CPSS, enhancing the interaction between traffic
dynamics and driver-vehicle relationships.

Leveraging the Vehicle-Edge-Cloud (VEC) platform, as
shown in Fig. 4, the synergistic integration of DDTs and
VDTs becomes a reality within the framework. The cloud
component, with its formidable computational capabilities and
expansive data storage, enables the realization of DDTs for
every driver, providing a backbone for sophisticated, personal-
ized driver models. Concurrently, the edge component is inte-
gral to guaranteeing real-time, low-latency communication and
the prompt execution of algorithms essential for the optimal
performance of VDTs. This synergy has been validated in the
field [40], [42], showing accurate driver prediction, significant
safety improvements, such as reduced speed variance, and
advancing environmental sustainability by decreasing fuel con-
sumption and emissions. DDTs play a pivotal role as the nexus
between individual drivers and the broader smart infrastruc-
ture, offering a deep understanding of driver behaviors through
advanced machine learning algorithms. This is particularly
crucial for complex maneuvers, such as car-following and
lane-changing behaviors, where DDTs significantly improve
predictive accuracy and safety. By integrating DDTs within
smart infrastructure services, we enable a tailored approach
to mixed traffic environments where human-driven vehicles

(HDVs) and CAVs coexist. The predictive power of DDT
allows CAV to interpret and adapt to not only the maneuvers of
HDVs but also the preferences of its own driver/passengers in
real time. The introduction of DDTs offers an unprecedented
degree of personalization, heralding a shift toward an adaptive,
user-focused transportation paradigm that underscores the core
values of safety, comfort, and trust, thus fostering a cooperative
and synchronized traffic ecosystem.

Parallelly, VDTs augment this intelligent infrastructure by
facilitating cooperative vehicle operations. Leveraging vehicle-
to-everything (V2X) communication, VDTs enable a seamless
exchange of real-time data, crucial for orchestrating synchro-
nized vehicular interactions during complex driving scenarios
such as ramp merging. The flexibility afforded by the cloud-
based system enhances the scalability of vehicle commu-
nication, transcending the traditional constraints of onboard
computational power.

By emphasizing the integration of digital twins into the
smart infrastructure framework, we underscore our commit-
ment to a future where technology not only complements but
enhances human decision-making. This approach ensures that
each journey is not only safer and more efficient but also
more attuned to the needs and behaviors of individual drivers,
encapsulating the very essence of a human-centric intelligent
transportation system.

D. Mobility Systems Planning and Operations

In light of this transformation to Transportation 5.0, it is
imperative to develop transportation system models that can
effectively capture the intricate dynamics of transportation
systems. These models play a pivotal role in supporting
decision-making processes within the context of smart mobil-
ity systems planning and operations. Leveraging computational
simulation, human decision science, advanced transportation
modeling, and state-of-the-art machine learning/deep learning
approaches, the UCLA Mobility Lab has introduced a com-
prehensive research framework known as Mobility Analytics
and Decision Science (MADS), as depicted in Fig. 5. The
MADS framework comprises several key components. At its
foundation lies a data layer responsible for collecting and inte-
grating data sourced from the physical transportation system.
Processed or synthetic data is then channeled to the digital
twin of the transportation system, which serves as the core
element of the framework. Note that this application is distinct
from the previous three real-time ones, since in this case the
physical and artificial worlds may interact in a less frequent
manner; however, we name it "near real-time”, meaning that
the digital artificial systems will need new data for updates
to stay consistent with the real world while the frequency of
updates is determined by actual decision-making needs. For
example, the update frequency might be 15 mins, 1 hour,
and 1 year for traffic management, emergency evacuation, and
transportation planning.

The digital twin encompasses two critical modules: a human
behavior module and a virtual environment module. These
modules work in harmony to simulate the dynamic interactions
between the human element and the virtual environment, repli-
cating real-world scenarios faithfully. The system dynamics
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Fig. 4. Vehicle-edge-cloud digital twin platform (adapted from [40])

generated within the digital twin extend their utility to the
analytics layer, enabling multifaceted analytics. The analytics
layer, in turn, provides valuable insights that inform decision-
making across a spectrum of areas, including travel demand
management, built environment planning, new mobility regu-
lation, and enhancing the resilience of transportation systems.

Furthermore, the digital twin serves as a virtual testbed,
allowing decision-makers to rigorously evaluate proposed
policies and strategies. This iterative adjusting process leads
to well-informed decisions that are highly tailored to the
evolving needs of transportation systems. It’s worth noting
that the versatility of the MADS framework extends beyond
the domain of transportation systems. It can be seamlessly
integrated with land use and urban planning models, energy
system models, and environmental models, enabling holistic,
system-level analyses that prove invaluable for cities seeking
to navigate the complexities of urban development.

Future Prospects

Envisioning the road ahead, Transportation 5.0 is anchored
by Foundation Intelligence for infrastructure services. This vi-
sion encapsulates a future where physical systems and artificial
systems are not just coexisting but are interwoven in a way
that enhances and augments each other. The integration of
real-world smart infrastructure with advanced Al and digital
counterparts will become more seamless. This synergy will
lead to smarter, more responsive, and adaptive transportation
systems. The fusion of physical and digital realms will enable
transportation systems to not just react to situations but to
predict and proactively manage them, significantly improving
efficiency and safety. This approach paves the way for more
sustainable and resilient transportation infrastructure, capable
of adapting to changing environmental and societal needs. As
the boundary between physical and artificial systems blurs, the
interaction between humans and these systems will become
more intuitive and natural, enhancing user experiences. Such
Intelligence in transportation will have far-reaching impacts,
influencing urban planning, environmental sustainability, and

wihow]

Perception

. I .' ,
v

User Interface

Communication
Q Connected and automated vehicles 2

Localization

Connected vehicles

even social equity. This process unfolds in several intercon-
nected stages:

Data Generation and Calibration: Physical systems, en-
compassing vehicles, traffic networks, and human behavior,
generate vast amounts of data. The data is crucial in calibrating
artificial or digital systems, ensuring they accurately replicate
real-world conditions and behaviors. Also, highly authentic
artificial systems will generate a huge amount of synthetic
data under different scenarios. These true “big data” can be
applied to guide physical system operations and planning.

Digital Twinning and Simulation: The digital realm comes
to life through simulations that mirror the physical world.
These simulations aren’t confined to vehicular movements
alone but extend to encompass broader transportation sys-
tems, network dynamics, and even human decision-making
processes related to travel and activities.

Scenario Development and Experimentation: In the dig-
ital space, countless scenarios are continuously executed,
exploring a wide array of possibilities. This requires robust
scenarios engineering, utilizing various methods to conceive
and test different scenarios. Through these experiments, digital
systems generate valuable insights and knowledge.

Feedback Loop for Management and Control: The
knowledge derived from digital experiments informs the man-
agement and control of physical systems. Decisions in the real
world are guided by the intelligence and insights gained from
their digital counterparts.

Continuous Learning and Adaptation: The loop doesn’t
end here. As real-world data flows back into the system and
even data from simulations are considered, artificial systems
undergo continuous learning and training, evolving and adapt-
ing over time.

This cycle of Foundation Intelligence fosters a transporta-
tion ecosystem that’s not just reactive but predictive and proac-
tive, continuously learning and adapting. It represents a future
where the seamless integration of physical and digital leads
to smarter, more efficient, and human-centric transportation
systems.
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