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Abstract— Understanding human mobility patterns has long
been a challenging task in transportation modeling. Due
to the difficulties in obtaining high-quality training datasets
across diverse locations, conventional activity-based models
and learning-based human mobility modeling algorithms are
particularly limited by the availability and quality of datasets.
Current approaches primarily focus on spatial-temporal pat-
terns while neglecting semantic relationships such as logical
connections or dependencies between activities and household
coordination activities like joint shopping trips or family meal
times, both crucial for realistic mobility modeling. We propose
a retrieval-augmented large language model (LLM) framework
that generates activity chains with household coordination
using only public accessible statistical and socio-demographic
information, reducing the need for sophisticated mobility data.
The retrieval-augmentation mechanism enables household coor-
dination and maintains statistical consistency across generated
patterns, addressing a key gap in existing methods. Our
validation with NHTS and SCAG-ABM datasets demonstrates
effective mobility synthesis and strong adaptability for regions
with limited mobility data availability.

I. INTRODUCTION

Understanding and accurately generating human mobility
patterns remains a fundamental challenge in transportation
research with implications for urban planning, public health,
and even retail strategies [1], [2], [3], [4]. Accurate mobility
modeling can enhance transportation efficiency and urban
design, ultimately improving civilian quality of life.

Traditional activity-based models (ABMs) have advanced
human mobility understanding by simulating daily activi-
ties based on socio-economic characteristics. Government
agencies like SCAG have widely adopted these models for
traffic analysis, urban planning, and commercial strategy
development since 1999 [5], [6]. While ABMs effectively
model behavioral dynamics, they require extensive local
data and rely on many assumptions. Meanwhile, data-driven
neural network approaches have emerged to capture mobility
patterns using mobile phone and GPS datasets [7], [8], [9],
[10].

However, these methods face several limitations, they
require detailed individual travel diary data which raises
privacy concerns, struggle to adapt to rapid urban changes,
and rely on simplified behavioral assumptions that may not
capture the flexibility of human decision-making in response
to socio-economic changes [11].
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Recent advances in computational power have enabled
Large Language Models (LLMs) to create new opportunities
for human mobility modeling [12], [13]. Models like GPT-
4 [14] excel at generating human-like text across domains
and understanding complex sequences with strong inter-
dependencies. Trained on diverse textual data, LLMs can
incorporate a wide range of human experiences and behav-
iors, potentially leading to more nuanced and varied human
mobility modeling compared with conventional methods, as
daily routines often involve intricate chains of activities with
subtle interrelations.

Building on this potential, we introduce a novel application
of LLMs for mobility data synthesis. Based on the concept
of activity chains [9], which reflects daily sequences of indi-
vidual activities, our framework employs retrieval-augmented
LLMs to generate realistic, demographically consistent mo-
bility patterns considering the household coordination. Given
by socio-demographic attributes and public available statis-
tics, the model ensures statistical consistency and coordi-
nated behavior without relying on extensive historical data
or detailed behavioral assumptions. This approach enables
scalable mobility data synthesis across diverse regions with
limited data availability, supporting micro-simulation and
integrated transportation modeling for urban planning. Our
study makes several key contributions to the field of human
pattern modeling compared with existing literature:

o We propose a novel LLM-based approach for activity
chain generation using only basic socio-demographic
and statistical data, reducing dependency on extensive
mobility datasets while preserving privacy.

« We develop a retrieval-augmented LLM framework with
feedback that ensures statistical consistency across gen-
erated patterns, producing reliable results for large-scale
mobility modeling. To the best of our knowledge, this
framework is the first application of retrieval-augmented
LLMs with feedback for mobility data generation.

o We pioneer LLM-based household-coordinated activity
generation, enabling realistic modeling of interdepen-
dent activities among household members.

II. LITERATURE REVIEW
A. Human Mobility Modeling

Human mobility modeling has evolved significantly since
the 1940s when the “Law of Intervening Opportunities” first
connected travel patterns to socio-economic factors [15].
Modern GPS and electronic tracking technologies have en-
abled sophisticated data collection and generative modeling
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Fig. 1: Proposed retrieval-augmented LLM framework with feedback loop for activity chain generation.

approaches, with activity chain generation becoming a key
focus area. ABMs represent a major advancement in trans-
portation planning by simulating individuals’ daily activi-
ties, using socio-demographic data, land use information,
and transportation networks to construct detailed activity
chains [16]. While SCAG implemented SimAGENT [6] to
analyze regional travel behaviors, ABMs require extensive
data collection and rely heavily on assumptions about travel
patterns, limiting their transferability.

Learning-based methods using deep learning, Graph Con-
volutional Networks, and transformers offer alternatives
when trained on mobility data from mobile devices [17],
[9], but remain dependent on high-quality data that is of-
ten expensive and restricted. Both traditional and learning-
based approaches face limitations from their reliance on
comprehensive datasets or numerous behavioral assumptions,
highlighting the need for training-free approaches like LLMs
that can synthesize mobility patterns using more accessible
data sources.

B. Household Activity Modeling

Early approaches treated household members as indepen-
dent units, overlooking their natural interdependencies [18].
Modern household activity modeling now incorporates intra-
household interactions, jointly modeling in-home and out-
of-home activities to capture trade-offs and interdependen-
cies between members [19]. Platforms like VirtualHome
model complex household activities through atomic action
sequences [20], while SMACH offers multi-agent simula-
tions to study energy consumption patterns and behavioral
impacts [21], collectively improving the realism of household
activity models.

Despite advances, current models fail to adequately cap-
ture household schedule interdependencies, relying on rigid
rules or extensive data that limits cross-cultural general-
ization. Computational demands also restrict scalability for

large-scale implementations.

C. Large Language Models

LLMs trained on trillions of tokens have emerged as pow-
erful tools with transformer architectures that excel across
domains from personal assistance to vehicle navigation [14],
[22]. Their flexibility enables rapid adaptation to new sce-
narios with minimal input [14].

Retrieval-augmented generation (RAG) enhances LLMs
by allowing access to external databases, grounding re-
sponses in reliable information and addressing hallucina-
tion issues, though challenges in trustworthiness remain.
Complementary approaches use automated feedback loops
to iteratively refine responses, reducing hallucinations across
various tasks [23].

Our framework leverages these technologies to generate
realistic activity chains with minimal data requirements. By
combining LLMs with specialized retrieval-augmentation,
we ensure statistical consistency and enable household activ-
ity coordination without requiring extensive location-specific
data, while capturing household activities’ interdependencies.

III. METHODOLOGY
A. Overview

The problem addressed in this study is defined as gener-
ating the daily activity chain for individual agents based on
their socio-demographic information throughout a day. For
each agent ¢ with his or her socio-demographic information
collection D; = {dil,diQ, ...,d;"}, we aim to generate a
daily activity chain C; for that agent where each activity in
the chain is defined by its type A, start time T, end time T,
and household members participating H. The output activity
chain C; for agent i can be represented as

C; =AM Tt Tt '), (A" Te ™, T ™, Hy™Y,

The architecture of our proposed framework is illustrated
in Fig. 1. The model takes 9 socio-demographic attributes



per agent as input, which feeds into a feedback loop LLM
mechanism containing modules for task description, statis-
tical information, generation guidelines, few-shot examples,
and feedback. The framework outputs activity chains with
temporal structure and household coordination. Once gener-
ated, activity chains are stored in a database. RAG retrieved
household-related info and statistical feedback from these
results will then be used in the feedback loop to continuously
refine subsequent activity chain generation tasks, ensuring
consistency across household members and alignment with
empirical distributions.

TABLE I: Activity types aggregated in the NHTS 2017
dataset for the Los Angeles area.

1 Home 2 Work 3 School
4 Caregiving 5 Buy goods 6 Buy services
7 Buy meals 8 General errands 9 Recreational

10 Exercise 11 Visit friends
13 Religious 14 | Something else

— | —

2 Health care
5 | Drop off/Pick up

Table I presents the 15 activity types used in our frame-
work, aggregated from the filtered NHTS 2017 dataset in
Los Angeles area [24]. These categories encompass the full
spectrum of daily human activities, from essential functions
like home, work, and school to discretionary activities such
as recreation, exercise, and social visits. This classification
system provides a comprehensive foundation for generating
realistic daily activity patterns.

B. Socio-Demographic Information

Agent socio-demographic information serves as model
input to generate activity chains reflecting individual char-
acteristics. Nine attributes (gender, age, education, student
status, employment, household relationships, income, driver
license status, and location) are converted to natural language
descriptions, as shown in Fig. 1. This conversion from
structured socio-demographic data into natural language ex-
pressions facilitates deeper contextual comprehension by the
LLMs, enhancing the realism and relevance of the generated
daily activity patterns.

C. Prompt Architecture

We provide the LLMs with a structured system prompt
that guides the generation of activity chains. The components
of the system prompt are designed to provide comprehen-
sive context and clear instructions, ensuring the generated
outputs are both logically reasonable and aligned with the
socio-demographic data. The structured input consists of the
following elements:

The Large Language Model is guided through a structured
prompt system, as detailed in Fig. 2. This structured prompt
integrates several critical components:

o Task Description: Defines the goal explicitly, instruct-
ing the LLM to generate realistic daily activity chains
for agents based on socio-demographic inputs and em-
pirical patterns from datasets like the NHTS survey.

« High-Level Statistical Information: Provides statisti-
cal context, such as activity type frequencies, typical
activity durations, household coordination probabilities,

and spatial-temporal patterns, that the LLM uses to
anchor generated activities to realistic empirical distri-
butions.

# Task Description

Generate a realistic one-day activity chain for a person based on their
demographic information, matching empirical patterns from NHTS survey
data. Also include information about household members participating in
each activity.

## Activity Type Codes:

1. *Home activities**: Sleep, household chores, remote work

2. *Work activities**: Professional or volunteer work

3. *School attendance**: Education activities

15. *Transport assistance**: Driving others

# Statistical Data

## Activity Type Frequencies:

| Code | Activity | Statistic % | Accompany by Household % | Notes |
1 1 1 | |

) I Ll 1 I i
| 1| Home | 35-45% | 27.3% | Always start/end here |

| 2 | Work | 20-25% | 9.2% | For workers only |

| 15 | Transport | 4-8% | 58.8% | Common activity |

## Statistical Patterns to Match

Activity Chain Length: Each activity chain should vary in length from 3 to
14 activities, with a natural mix of shorter and longer chains....

Activity Duration Distribution: Use VARIABLE and realistic durations
based on activity type, not fixed slots. Shorter activities for shopping......
Activity Timing: Create a MORE CONTINUOUS distribution of activity
starts/ends throughout the day......

Household Coordination: For each activity, indicate how many household
members participate in the activity with the person. Consider which activities
are likely to be done together (dining, shopping, recreation) versus alone...
## Location and Time Context: United States, California, 2017

# Guidelines

## Create natural variation: Avoid fixed patterns or identical durations.

## Respect time constraints: Activities should flow logically.....

## Demographic alignment:Employment status strongly affects daily
patterns. Age influences activity types and timing. Income level.....

## Household coordination: Consider which household members would
logically participate in activities together......

## Output Format:

[[activity_code, start_quarter, end_quarter, household_members_count], ...]
## Example Activity Chains for Individuals and Household members

# Agent Demographic info and In Context Feedback

## Current Agent Demographic info: Liscensed Driver:Yes, Educational
Attainment: college, Gender: Male, Has Job: Yes...

## Current Agent Household info:

Current agent's Role in this household: Household head.

There are "x" household members in total and "y" out of "x" members are
generated.

Other household members' activity chains:

Person 1 (Spouse): Activity 1, Activity 2..., Activity 4......

Unfulfilled coordination activities that need to be addressed:

Activity type "a" starting at quarter "t1" ending at quarter "t2"

## Statistic Feedback based on generated Chains Dataset:

For this chain, please prioritize generating a chain with "n” activities.

Fig. 2: Example of input system prompt for LLMs.

o Generation Guidelines: Specifies constraints and stan-

dards for output realism, including the logical order-
ing of activities, duration distributions, and household
coordination requirements. This ensures feasible and
contextually coherent daily schedules.

Few-Shot Examples: Demonstrates desired output for-
mats through representative examples, helping the LLM
internalize typical patterns of activity sequences, dura-
tions, and transitions. These examples enable the model
to generate outputs adhering closely to observed human
mobility patterns.

Retrieval-Augmented Generation Feedback: Dynam-
ically integrates statistical feedback and previously gen-
erated household member activities into the LLM’s gen-



eration loop. This retrieval-augmented approach main-
tains consistency across household activity chains, sup-
ports realistic household coordination (such as shared
home activities, joint travel, and synchronized activity
timings), and aligns generated chains with observed
statistical distributions.

Fig. 2 provides an example of the system prompt. These
components collectively ensure that the LLM has a clear
understanding of the task requirements and the contextual
background needed to generate accurate and representative
activity chains.

D. Retrieval-Augmentation Mechanism

Our framework incorporates a retrieval-augmentation
mechanism to address limitations in sequential, agent-
specific activity chain generation. LLMs typically struggle
to maintain awareness of global statistical distributions when
generating chains individually based on socio-demographic
information. As shown in Fig. 2, we overcome this by
continuously monitoring and storing generated results, track-
ing statistical attributes like activity chain lengths. This
stored data provides real-time feedback to the LLM, guiding
subsequent generations to maintain consistency with em-
pirically observed distributions. The system adapts prompts
by analyzing previously generated data, guiding the LLM
to produce activity chains that align with desired statistical
distributions. Our experimental analysis shows that providing
statistical feedback exclusively on chain length distribution
successfully enhances both activity type and temporal distri-
butions by utilizing the LLM’s natural inference capabilities.
This streamlined approach that focuses only on constrain-
ing chain length statistics minimizes potential bias while
enabling the model to create naturally coherent patterns
throughout various aspects of human mobility behavior. For
household coordination, our system implements a retrieval
mechanism that incorporates previously generated activity
patterns when generating chains for new household members.
The system retrieves existing mobility patterns and coor-
dination activities like family meals, shared transportation,
and joint recreation. This household context enables the
LLM to generate aligned joint activities while maintaining
schedule coherence, reflecting realistic family dynamics and
interdependencies.

The mechanism identifies and resolves scenarios where
household coordination activities remain incomplete or un-
synchronized, ensuring properly coordinated and temporally
coherent activities.

By integrating retrieval-augmentation with iterative feed-
back, our framework produces robust activity chains that re-
duce unrealistic mobility patterns brought by LLM hallucina-
tions while ensuring statistically consistent and contextually
appropriate household coordination.

IV. EXPERIMENT
A. Dataset

1) National Household Travel Survey Dataset: The 2017
National Household Travel Survey (NHTS) dataset [25]

serves as our primary reference, providing comprehensive
U.S. travel behavior data. From approximately 129,000
households and 264,000 persons surveyed, we used 180,000
filtered person records. Activities were aggregated into 15
types shown in Table I. The dataset includes household
coordinated activities, enabling analysis of travel behavior
interdependencies among household members.

2) Activity-Based Model Dataset from Southern Califor-
nia Association of Governments: We also utilize synthetic
results from the Southern California Association of Govern-
ments (SCAG) Activity-Based Model [6], which simulates
travel patterns for 26 million people. The activity chains
from this dataset are converted to match our activity type
categories in Table I for consistent comparison.

B. Experiment and Result

We evaluated our approach using the NHTS dataset in
the California area by randomly sampling 500 agents and
generating their daily activity chains based on their socio-
demographic data. These chains were then validated against
the comprehensive daily activity records from the NHTS
dataset and the SCAG dataset. In our experiments, we
utilized three large language models: OpenAl’s GPT-4o
mini, Meta’s Llama3.1-70b, and DeepSeek v3, with the
temperature setting of 1.0 for each model, comparing their
performance in accurately simulating daily human activities.
The token size for input is around 700 and output around 4
on average for each activity chain generation. The generation
speed for each instance was approximately 0.5 seconds for
the GPT-40 mini and DeepSeek v3 API calls, and 1 second
for the Llama3.1-70b model with 4-bit quantization running
on an L40S GPU with 48GB memory.

The evaluation metrics will compare the distributions of
activity type, start time, end time, duration, and the number
of daily activities. We employed Jensen-Shannon Divergence
(JSD) to quantify the differences between the generated
activity chains and the reference activity chains from the
NHTS and the SCAG dataset.

TABLE II: JSD values comparing different models with
reference datasets. Lower values indicate better alignment
with reference distributions. The SCAG-NHTS comparison
(bottom row) serves as a baseline, showing inherent differ-
ences between the two reference datasets.

Comparison Type Time Time | Duration | Length
start end

NHTS-SCAG 0.031 | 0.007 | 0.006 0.006 0.003
NHTS-GPT 0.023 | 0.015 0.011 0.022 0.011
NHTS-Llama 0.024 | 0.090 | 0.081 0.023 0.011
NHTS-DeepSeek | 0.040 | 0.013 | 0.013 0.026 0.009
SCAG-GPT 0.028 | 0.009 | 0.009 0.020 0.009
SCAG-Llama 0.045 | 0.061 0.056 0.027 0.006
SCAG-DeepSeek | 0.065 | 0.013 0.016 0.020 0.007

We analyzed the JSD values between our approach and
the reference datasets, as detailed in Table II. A JSD value
closer to 0 indicates a more accurate approximation with



the reference dataset’s distribution. Overall, our LLM-based
approach successfully captures the trends in human mobility
patterns across all evaluated dimensions. Among the models
we tested, GPT-40 mini demonstrates particularly strong per-
formance, especially in activity type and end time modeling
across both datasets. The JSD values between NHTS and
SCAG datasets (ranging from 0.003 to 0.031) reveal inherent
differences between survey-based data (NHTS) and synthetic
data (SCAG-ABM), which provides important context for
interpreting our results against each reference dataset.
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Fig. 3: Evaluation matrix on SCAG and NHTS dataset

C. Activity Type

Fig. 3¢ shows our approach accurately represents activity
type distributions from reference datasets, especially for
common activities like home and work. Our models capture
both frequent and rare activity types with varying accuracy.
GPT-40 mini aligns particularly well with reference distri-
butions, accurately representing less common activities such
as childcare, healthcare, and errands.

D. Activity Duration

Fig. 3a demonstrates our approach accurately models
activity duration distributions from both reference datasets.
The models capture the prevalence of shorter activities in
NHTS and moderate-length activities in SCAG. All imple-
mentations perform well in this dimension, with GPT-40 mini
showing the strongest alignment with both reference profiles,
particularly for activities of various durations.

E. Activity Chain Length

Fig. 3b shows our approach captures the preference for
shorter chains (3-6 activities) present in both reference
datasets. All models generate realistic activity chain lengths,
though they struggle with complex chains exceeding eight

activities. This limitation presents an opportunity for future
improvement in modeling extended daily routines, while con-
firming our approach successfully captures common activity
chain patterns.

FE. Activity Start Time

Fig. 4 reveals our approach captures daily temporal pat-
terns from both NHTS and SCAG datasets. The models
reproduce characteristic peaks matching typical daily sched-
ules. While all models capture general temporal trends, GPT-
40 mini shows the closest match with reference patterns, es-
pecially for activity end times. DeepSeek excels at modeling
early-day start times, highlighting how different architectures
may capture specific temporal aspects of mobility.

Activity Start Time Distribution -

—— GPT
—— Llama

DeepSeek
NHTS

0.025 SCAG B
— ol

0.075

o
o
@
=}

Proba billty

o [} | | | | |
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time of Day

0.000-

Fig. 4: Start time distribution comparation

G. Activity pattern in different social group

Our detailed analysis of activity start times for specific
social groups, namely students and workers as illustrated in
Fig. 5, demonstrates that our approach effectively captures
distinct daily routines across different socio-demographic
segments. The generated patterns successfully replicate char-
acteristic peaks and time-of-day variations aligned with both
NHTS and SCAG reference data. While GPT-40-mini shows
the best performance in modeling social group-specific mo-
bility behaviors, our overall approach consistently represents
realistic daily activity patterns for both students and workers.
These results validate the effectiveness of our method in
generating accurate human mobility patterns that reflect the
temporal dynamics of different social groups.
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H. Activity Pattern by Activity Type

The analysis of activity start times categorized by activity
types, as shown in Fig. 6, highlights the robustness of our
proposed approach in capturing nuanced temporal patterns.
GPT-40-mini demonstrates superior alignment with the ref-
erence datasets across all analyzed activity types, particularly



in accurately reproducing the peak timing patterns for home,
work, and dining activities. DeepSeek exhibits notable preci-
sion in capturing morning peaks for work-related activities,
while Llama, though broadly accurate, tends to show more
variability in capturing home and dining patterns. These
findings emphasize the efficacy of our retrieval-augmented
approach and underline GPT-4’s particularly strong perfor-
mance in modeling activity-specific timing trends.
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1. Household Coordination Activities

Based on GPT-40 mini’s superior performance in previous
evaluations, we focused our household coordination analy-
sis on results from this model. Our analysis demonstrates
excellent overall alignment with the NHTS reference dataset
as shown in Fig. 7. The model successfully captures realistic
patterns of joint household activities, particularly those where
family members are most likely to participate together.
We further analyzed specific relation pairs, namely head-
spouse and head-child interactions, to evaluate the model’s
performance at a more granular level.
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Fig. 7: Household coordination activities participate rate
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As presented in Table III, household-interactive activities
such as home, shopping, and errands show particularly strong
alignment for both relation types, with minimal divergence
measured by low JSD values. While care, dining out, and

service-related activities—all common scenarios for joint
household participation—exhibit slightly greater discrepan-
cies, especially in head-child interactions, they remain within
acceptable ranges. This detailed analysis by relation pair
confirms that GPT-40 mini effectively reproduces household-
coordinated behaviors across different family relationships,
highlighting the strength of our retrieval-augmented approach
in generating contextually consistent and realistic household
interactions for the most common joint activities.

TABLE III: JSD values for household coordination activities
participate rate compared with NHTS dataset

Relation Home | Care | Shop | Serv. | Dining| Errands
Head-Spouse | 0.0003| 0.028| 0.012] 0.000| 0.011 0.031
Head-Child 0.0003| 0.049| 0.005| 0.005| 0.057 0.011

V. ABLATION STUDY AND HALLUCINATION
ELIMINATING

To evaluate the effectiveness of our retrieval-augmented
feedback approach in generating consistent activity chains
with household coordination and reducing hallucinations,
we conducted an ablation study comparing the model’s
performance with and without this mechanism.

TABLE IV: JSD values comparing activity chain statistics
with and without retrieval-augmented feedback.

Comparison Type Time Time | Duration | Length
start end

NHTS-GPT 0.032 | 0.063 0.072 0.031 0.110
NHTS-GPT 0.023 | 0.015 | 0.011 0.022 0.011
(Feedback)

SCAG-GPT 0.091 | 0.061 0.068 0.028 0.090
SCAG-GPT 0.028 | 0.009 | 0.009 0.020 0.009
(Feedback)

As shown in Table IV, our retrieval-augmented feedback
mechanism provides statistical distributions on the length
of generated activity chains. Using GPT-40 mini, the best-
performing model, we observed substantial improvements
across all metrics when testing on both NHTS and SCAG
datasets. These results clearly demonstrate that our retrieval-
augmented feedback mechanism effectively constrains the
model to generate activity chains that more closely match
real-world statistical distributions in terms of activity type,
timing, duration, and length.

TABLE V: Impact of Retrieval-Augmented Feedback on
Household Activity Consistency

Inconsistent
63 (5.9%)
1,223 (70.6%)

Consistent
T,011 (94.1%)
509 (29.4%)

Approach
With RAG Feedback
Without RAG Feedback

Moving beyond general statistical distributions, we also
examine how our approach impacts household coordination
activities. Table V demonstrates the critical role of our
retrieval-augmented feedback mechanism in eliminating hal-
lucinations and maintaining household activity consistency.
With the feedback loop, 94.1% of activities claimed to be
performed with household members match corresponding ac-
tivities by those members, compared to only 29.4% without
this mechanism.



This difference highlights how our approach addresses a
key challenge in activity chain generation: ensuring logi-
cal consistency across interdependent agents. The feedback
mechanism reduces hallucinations while producing more
realistic household dynamics by ensuring joint activities are
actually shared among household members.

Our hallucination elimination strategy creates a cross-
verification system where household members’ activities are
checked against others’ reported schedules, reducing halluci-
nated joint activities from 70.6% to 5.9%. This demonstrates
our approach not only generates more accurate activity pat-
terns but also effectively mitigates a primary concern in using
LLMs for simulation tasks requiring logical consistency
across multiple agents.

VI. CONCLUSION AND FUTURE WORK

This study presents a novel LLM-based approach for
generating human mobility patterns using minimal socio-
demographic data, leveraging GPT-40 mini and Llama2-70b
with NHTS and SCAG datasets. Our framework demon-
strates strong alignment with real-world patterns through low
JSD values, with GPT-40 mini excelling in activity mod-
eling while our retrieval-augmented feedback mechanism
reduced hallucinations from 70.6% to 5.9%. While offering
substantial benefits for urban planning through reduced data
requirements, limitations remain. Future work will extend
to multi-day forecasts with richer datasets, specialized fine-
tuning, and hybrid models combining learning-based meth-
ods with LLMs to enable low-cost, large-scale simulations,
establishing new benchmarks in mobility modeling while
maintaining computational feasibility.
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