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Mobility Al Agents and Networks
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Abstract—Intelligent vehicles and smart mobility systems are
at the forefront of transportation evolution, yet effective manage-
ment of these new mobility technologies and services are non-
trivial. This letter proposes an Intelligent Mobility System Digital
Twin (MSDT) framework as a solution. Our framework uniquely
maps human beings and vehicles to AI agents and the mobility
systems to Al networks, creating realistic digital simulacra of the
physical mobility system. By integrating AI agents and networks,
this framework offers unprecedented capabilities in prediction
and automated simulation of the entire mobility systems, thereby
improving planning, operations, and decision-making in smart
cities.

I. INTRODUCTION

S TECHNOLOGY advances and economies grow, urban-

ization accelerates, leading to increased population den-
sities [1]]. This trend presents complex mobility management
challenges for city decision-makers and governments. The
concept of the digital twin emerges as a promising solution to
these challenges [2]-[4]. Creating a digital twin of the physical
mobility system facilitates more efficient planning, operations,
and decision-making. It seamlessly integrates existing mo-
bility models, enhancing the simulation and optimization of
mobility networks. This integration is particularly valuable
for intelligent vehicles and smart mobility systems [5], as
it provides a comprehensive virtual environment to model
and predict the behavior of both traditional vehicles and
connected automated vehicles (CAVs). Digital twins enable the
assessment of how these emerging technologies interact with
existing infrastructure and influence traffic patterns, safety,
and efficiency. This real-time analysis and predictive modeling
capability allows for more responsive and adaptive manage-
ment strategies, paving the way for the smooth integration of
intelligent mobility solutions.

The key to establishing a mobility system digital twin
(MSDT) lies in accurately modeling the intelligent behavior of
all system components, such as humans, vehicles, and roadway
networks. We propose Mobility Al agents and network mod-
eling. In this MSDT, AI agents and Al networks form the core
components. Al agents serve as simulacra of human beings,
learning and replicating complex behavior patterns. These
agents can perceive and understand their environment, making
autonomous predictions and decision-making. Al networks, in
turn, represent an intelligent and adaptive model representation
of the transportation infrastructure system. These networks
go beyond static mapping, incorporating real-time data and
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self-learning capabilities to reflect and predict the state of
the mobility system dynamically. Together, Al agents and
Al networks create a dynamic and realistic representation
of mobility, enabling comprehensive modeling of complex
mobility systems.

This letter presents a comprehensive conceptual framework
for developing an MSDT that integrates diverse data sources,
as illustrated in Fig. [l Through the fusion and analytics
of multifaceted data streams, we construct highly accurate
digital representations that mirror the complexities of real-
world mobility systems. This approach enables the creation
of sophisticated AI agents and networks, forming a robust
foundation for advanced simulation and analysis. The frame-
work supports various applications, ranging from cutting-edge
simulation tools to in-depth mobility system inference. These
capabilities significantly enhance planning processes, inform
policy formulation, and facilitate strategic decision-making.
Moreover, the digital twin operates in a continuous feedback
loop with the physical mobility system, allowing for real-time
adjustments and long-term improvements of the digital twin
for mobility management.

II. SYSTEM FRAMEWORK OF MSDT

The MSDT is a comprehensive framework designed to
enhance mobility analytics by integrating digital and physical
systems. As illustrated in Fig.[1] this system relies on Al agents
and Al networks to create a detailed digital replica of the
physical mobility system, with the data warehouse serving as
a critical foundation.

A. Data Warehouse

Our framework begins by constructing a comprehensive
data warehouse that feeds into the digital twin. This data
warehouse encompasses three key categories: Foundation,
Processed, and Synthetic Data. Foundation Data includes
information collected from human subjects (e.g., surveys [6]]
and tracked GPS points [7]) and infrastructure (e.g., Open
Street Map [J8], traffic count data [9]], crash data [[10], and
aerial videos and images). Processed Data, derived through
data mining, can include aggregated traffic states of specific
road segments in given time intervals and travel trajectories
of individuals in areas of interest, including activity types,
start/end times, and locations. Synthetic Data can be generated
through simulation or pre-trained models, such as synthetic
population information, synthetic travel trajectories, and multi-
modal networks. These datasets are instrumental in developing
and validating AI agents and networks, and also perform use
case analysis, such as post-processing to understand travel
patterns or network congestion patterns.
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Fig. 1: Integrated intelligent mobility system: a digital twin framework with Al agent and network modeling

B. Mobility System Modeling

At the core of our framework is the Mobility System
Modeling process. It serves as a crucial bridge between the
data warehouse and Digital Simulacra, automating the Al
agents and networks to create an autonomous and intelligent
digital twin of the mobility system. Agent Behavior Modeling
is a critical component of our Mobility System Modeling,
focusing on three key models: human mobility, social rela-
tionships, and environmental responsiveness. Human Mobil-
ity modeling examines how individuals with different socio-
economic and demographic backgrounds exhibit various daily
activities and travel patterns (considering that travel demand
is derived demand from needed activities). This modeling
helps predict and understand diverse mobility needs and
preferences across the population [[11]]. Social Relationships
modeling captures the interpersonal dynamics that influence
travel decisions. It recognizes that an agent’s activities are
often affected by others, for example, friends coordinating
get-togethers or family members arranging joint activities.
This aspect is crucial for simulating the integration between
Al agents. Environmental Responsiveness modeling exam-
ines how agents make decisions under diverse environmental
conditions. These conditions range from traffic scenarios and
weather conditions to special events. Ideally, the model should
also be capable of reflecting any changes in the network,
including the introduction of new mobility technologies and
services such as EVs and AVs [12]-[15]. This modeling is
essential for equipping Al agents with the ability to make
realistic decisions. It forms the foundation of their decision-
making capabilities and allows interaction with dynamic and
constantly evolving Al networks.

Network modeling is another crucial component in the
mobility system modeling process. It focuses on three main as-
pects: digital network generation and completion, multi-scale
simulation, and traffic flow analysis. Digital Network Gen-
eration and Completion involves creating a digital represen-
tation of the physical mobility network using real-world data.
However, recognizing that real-world data is often incomplete,
an automatic completion functionality is in demand [16]. This
Al-driven completion process utilizes data from nearby traffic
networks, various infrastructure sources (e.g., loop detectors
and image/video data), and human activity patterns to fill in
the gaps. Next, Multi-Scale Simulation models can be built
on the digital network, ranging from individual agent-based
vehicle simulations to large-scale transportation system simu-
lations. This multi-scale approach allows for a comprehensive
understanding of the mobility system, capturing both micro-
level interactions and macro-level patterns [[17]—[20]. The third
aspect, Traffic Flow Analysis, involves modeling traffic flow
and congestion patterns, enabling the AI network to estimate
and predict traffic conditions [21]], [22].

Knowledge-based AI, such as large language models
(LLMs) and vision-and-language models (VLMs), plays a role
in enhancing mobility system modeling. They interpret and
contextualize data from multiple sources, providing a compre-
hensive view of the mobility system. This equips Al agents
and networks with the ability to extract crucial information,
enabling them to understand environmental conditions and
real-time mobility situations effectively.

C. Digital Simulacra: Al Agents and Networks

1) AI Agents: Al agents in our digital twin represent a
significant advancement in simulating human mobility behav-
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ior. Each agent is assigned a unique identity with specific
socio-economic and demographic information, along with their
residential, work, or school locations. Based on their identity,
Al agents can make decisions according to complex situational
factors such as traffic and weather conditions, as well as time
constraints.

With these capabilities, Al agents can serve as the next
generation of travel demand models. To generate travel de-
mand, Al agents initially learn the activity patterns of each
type of identity, such as work, school, or leisure. Then,
they form travel preferences, including preferred routes and
transportation modes. These choices adapt based on their past
experiences and new situations.

Moreover, Al agents interact not only with other Al agents
but also with the Al networks. For example, an agent might
adjust its route based on real-time traffic conditions provided
by the Al network, or the network might update its conges-
tion predictions based on the collective behavior of multiple
agents. This interaction simulates real-world social influences
in transportation decisions, such as how individuals influence
each other’s travel decisions or how large events can cause
shifts in traffic patterns.

The transferability of a pre-trained Al agent model allows
for seamless behavior adaptation across different regions and
cultures, making it versatile for various mobility systems. This
transferability is achieved through fine-tuning techniques. We
start with a base model trained on a large, diverse dataset,
then adapt it to specific regions or cultures by training on
smaller, localized datasets. This approach allows the model to
retain general mobility patterns while learning region-specific
behaviors, enabling efficient deployment across different urban
environments with minimal additional training.

2) AI Networks: Al networks form the intelligent backbone
of our digital mobility infrastructure. Their state estimation
capabilities provide real-time insights into mobility system
conditions, including areas with limited data due to signal loss,
device malfunction, or low sensor coverage. Al networks can
predict traffic considering multiple factors, such as weather
and special events, to forecast future traffic states accurately.
This prediction goes beyond traffic congestion, aiming to
understand underlying causes and potential chain effects. For
example, it can predict how a traffic incident on a major
highway might lead to congestion on nearby arterial roads or
how severe weather might affect public transit ridership and
subsequently impact road traffic.

The generative capabilities (estimation and prediction func-
tions) bestow the AI network with self-forming capability,
allowing it to automatically generate pedestrian routes, bicycle
paths, and other network elements based on trajectory data
and observed movement patterns. The networks also feature
auto-calibration, continuously fine-tuning parameters based on
observed discrepancies without human intervention.

Additionally, their evolution capability enables adaptation
to long-term changes in urban structure, policy, and human
behavior, effectively “growing” with the region they represent.
Hence, the AI network can adjust its model over time to
accommodate significant changes such as new infrastructure

developments, shifts in population density, or evolving trans-
portation policies.

The synergy between Al agents and AI networks forms
our Digital Simulacra. Once established, Al agents are loaded
onto the Al network, creating a comprehensive and interactive
digital ecosystem. This integration allows for sophisticated
simulations where individual agent behaviors influence and
are influenced by network conditions. For instance, Al agents’
route choices and travel times are affected by the network’s
traffic predictions, while the collective behavior of agents
shapes the network’s state and evolution. This bidirectional
interaction enables the digital twin to capture complex phe-
nomena such as emergent traffic patterns, the impact of policy
changes, and the ripple effects of local disturbances across the
entire mobility system. Furthermore, this integration facilitates
scenario testing, where changes to either agent behaviors or
network conditions can be simulated to predict system-wide
outcomes, providing valuable insights for urban planning and
mobility management strategies.

D. Applications

Digital Simulacra achieves digital autonomy and opens the
door to numerous downstream applications.

o Al Agent Anomaly Detection: Al agents learn typical
human movement patterns across various times, locations,
and social contexts. These models help identify deviations
from the norm, enabling the detection of anomalous
activities within the extensive global human trajectory
data [23], [24].

o Automated Mobility System Simulation: Integrating Al
agents and Al networks enables comprehensive, auto-
mated simulations of entire mobility systems. Al net-
works generate and complete digital mobility networks.
They then predict traffic patterns, performing dynamic
traffic assignments based on real-time conditions. Si-
multaneously, Al agents function as next-generation, Al-
based travel demand models [16]], [17].

« New Mobility Intelligence: Al agents learn the
travel preferences of individuals from various socio-
demographic backgrounds, enabling them to offer per-
sonalized travel recommendations [25]]. Additionally, Al
networks can simulate the impact of CAVs on traffic
flow, safety, and overall system efficiency. By modeling
human interactions with CAVs, Al agents help optimize
integration strategies and predict adoption rates [20].

III. PROGRESS AND RESULTS

Building on the comprehensive overview of the MSDT, this
section provides a detailed examination of the AI agent and
network modeling processes, as well as the outcomes and
progress of ongoing research by the UCLA Mobility Lab.
These processes form the core of our framework, enabling
the creation of digital twins. The work started with LA as a
testbed and is being extended to other places in the US and
other parts of the world.
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A. Data Warehouse Construction

Developing a high-quality data warehouse adapts the data-
centric Al and Machine Learning Operations (MLOps) con-
cept [27], and it includes organizing, integrating, cleaning,
and enhancing raw data, and annotating data with contextual
information to make data more useful for analysis, discovery,
and decision-making.

To build up the data warehouse, we collected and curated
datasets from various sources:

e Population Data: American Community Survey [28]],
National Household Travel Survey [6]], and Synthetic
Population data from Southern California Association of
Governments (SCAG) [29] for building Al agent profile.

o Human Travel Behavior Data: Household Travel Surveys
[6]1, [30] and synthetic trajectory from LA-Sim [[17] for
Al agent travel activity modeling.

o Location-Based Data: GPS data provided by Veraset [[7]],
and Point-of-interest (POI) data provided by Open Street
Map [8]] for learning the movement pattern of Al agent
in the network.

o Transportation Network: Open Street Map for building
road network [8]], General Transit Feed Specification data
(GTFS) for public transit behavior study [31].

o Traffic Data: PeMS [9] for traffic flow modeling, Re-
gional Integrated Transportation Information System (RI-
TIS) [32] and Work Zone Data Exchange (WZDx) [33]]
for work zone traffic impact modeling;

o Stated/Revealed Preference Survey Data: Southern Cal-
ifornia Autonomous Vehicle Preference Survey [34] for
learning CAV impact on travel choices.

B. Implementation for Al Agents

Gathering socio-demographic information, travel diaries,
and trajectories is essential to construct AI agents. How-
ever, collecting such data using location-based services raises
significant privacy concerns [35]], particularly regarding the
identification of specific POIs within trajectories. To address
privacy concerns, Al agents are developed as anonymous
digital simulacra of human beings, designed to emulate travel
behaviors while safeguarding personal privacy. By masking
the link to any specific person, these agents can process and
simulate detailed information without leaking personal data.

1) Al agent mobility pattern modeling: We develop the
Deep Activity Model [11], a generative deep learning approach
to model human mobility patterns using socio-demographic
information, travel diaries, and travel trajectories. The model
is trained to learn the relationship between an Al agent’s socio-
demographic information and mobility (activity and travel)
patterns. Importantly, the input data includes information about
the AI Agent’s household members and social network, allow-
ing the model to learn interactive behaviors and their impact
on activities across multiple Al agents. The Deep Activity
Model learns the dependencies between activities, considering
factors such as start and end times, duration, and location for
each activity. It employs an auto-regressive generation method,
sequentially creating a full day’s travel activities starting from
midnight. As shown in Fig.[2] this approach enables the model
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Fig. 2: Activity of 200 AI agents on a weekday at 19:43.
Each bubble stands for an Al agent, and its travel behavior is
displayed by the movement from one activity to another.

to generate realistic activities for Al agents by capturing the
complex interdependency within households, social networks,
and individual activities.

Our experiments validate the model’s robustness and ver-
satility. It demonstrates strong performance when fine-tuned
with data from diverse regions, including California, the Puget
Sound area, and Mexico City. It allows us to capture various
travel behaviors and patterns across geographical and cultural
contexts.

2) Al Agent Modeling Empowered by Knowledge-Based
Al: To further enhance the intelligence of our Al agents,
we implement principles of embodied Al [36], [37]], making
these agents highly sophisticated and capable of understanding
complex contexts, reasoning about their environment, and
making informed decisions. This advanced level of Al can
be achieved through knowledge-based Al approaches.

LLMs, as one typical knowledge-based Al, are used to im-
prove the reasoning capabilities of Al agents, as summarized
in Fig. 3] We implement LLMs for data mining to interpret
each stay point in a trajectory and annotate it with possible
POIs and activities [38]]. This process enriches time series data
processing tasks with natural language processing, enabling
Al agents to understand and contextualize trajectories. To
address situations where social-demographic information is
lacking, we harness the sophisticated reasoning capabilities
of LLMs to reconstruct Al agent profiles. Building upon the
annotated human trajectory data, LLMs infer uncovered Al
agents’ attributes, such as occupation, travel preferences, and
income level. With these reconstructed profiles and annotated
trajectories, LLMs can generate realistic activities for Al
agents and guide the activity generation process. This approach
allows our Al agents to exhibit more human-like decision-
making in complex mobility scenarios, considering not only
raw data but also contextualized and implied information.

C. Implementation for AI Networks

1) Agent-Based Simulation: We have developed a large-
scale simulation platform to obtain realistic travel trajectories
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and traffic conditions. Our Deep Activity Model generates
realistic mobility patterns, and our agent synthesis includes
diverse transportation modes for a comprehensive mobility
representation [11]. As shown in Fig. 4l our network incor-
porates local road and public transit infrastructures, and Al
agents are loaded into the network.

Our simulation utilizes a macroscopic agent-based simula-
tion toolkit called MATSim [39]], which provides a nuanced
platform for integrating our detailed Al agent profiles and
network models. A data-driven approach optimized the model
by clustering highways based on traffic data. In future work,
we will formulate this optimization problem with a meta-
model for inference, enabling an auto-calibration process for
the Al network.

To demonstrate the capabilities of our simulation platform,
We apply our simulation and calibration pipeline for Los
Angeles County [17]]. The model incorporates detailed multi-

modal networks, a million-level size of agents, and provisions
for micro-mobility and electric vehicles. Through rigorous
validation against real-world traffic counts and an extensive
calibration process involving multiple iterations, the model
demonstrated a robust capability to predict and analyze the
traffic dynamics of a mega-city. This offers valuable insights
for urban planners and policymakers to evaluate the impact
of future infrastructural changes, policy implementations, and
technological advancements on city-wide mobility and accessi-
bility. The simulation outputs are intended to support decision-
making processes to enhance transportation efficiency, reduce
emissions, and improve overall urban mobility in densely
populated urban areas.

2) Network State Modeling: Traffic state prediction is a
crucial component of intelligent transportation systems (ITS)
[40], enhancing the AI network’s estimation and prediction
capability. We have made significant breakthroughs in estimat-
ing and predicting traffic state in special events. For example,
We developed a novel deep-learning model to predict traffic
speed and incident likelihood during planned work zone events
[41]. Also, we model the long-term congestion and short-
term speed patterns during hurricane evacuations [42], [43]].
These accurate and timely predictions, especially predictions
under special weather and roadway conditions, enhance traffic
management and support congestion prevention and mitigation
efforts [44] [45].

3) Interactions Between Al Agents and Al Networks: The
interaction between Al agents and Al networks, especially
in estimating how Al agents’ behavior affects networks, is
central to our modeling approach. Our study examines how
Al agents adopting CAVs and Electric Vehicle (EV) affect
the network and alter mobility patterns [34], [46]-[48] in
large urban transportation networks, using a traditional choice
model-based techniques, i.e., activity-based models (ABMs).
However, developing ABMs is often time-consuming and
resource-intensive, requiring extensive parameter calibrations,
and hence limits the adaptability and scalability of Al agents
and networks. Therefore, a more efficient method is in de-
mand. This MSDT framework provides new solutions to
learning interaction patterns between Al agents and networks
in a highly automated approach.

IV. FUTURE WORKS

Looking ahead, this MSDT framework consists of Al agents
and networks that have the potential to revolutionize the
way we model and analyze mobility systems. It can more
accurately simulate the impacts of new technologies, policies,
and infrastructure changes. Future work will focus on enhanc-
ing agent learning capabilities, improving the adaptability of
Al agents and networks, and developing more sophisticated
interaction models. This approach will provide planners with
valuable insights for creating more efficient and sustainable
mobility systems.
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