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Abstract— Travel demand models are critical tools for plan-
ning, policy, and mobility system design. Traditional activity-
based models (ABMs), although grounded in behavioral theo-
ries, often rely on simplified rules and assumptions, and are
costly to develop and difficult to adapt across different regions.
This paper presents a learning-based travel demand model-
ing framework that synthesizes household-coordinated daily
activity patterns based on a household’s socio-demographic
profiles. The whole framework integrates population synthesis,
coordinated activity generation, location assignment, and large-
scale microscopic traffic simulation into a unified system. It
is fully generative, data-driven, scalable, and transferable to
other regions. A full-pipeline implementation is conducted in
Los Angeles with a 10 million population. Comprehensive
validation shows that the model closely replicates real-world
mobility patterns and matches the performance of legacy
ABMs with significantly reduced modeling cost and greater
scalability. With respect to the SCAG ABM benchmark, the
origin-destination matrix achieves a cosine similarity of 0.97,
and the daily vehicle miles traveled (VMT) in the network
yields a 0.006 Jensen-Shannon Divergence (JSD) and a 9.8%
mean absolute percentage error (MAPE). When compared to
real-world observations from Caltrans PeMS, the evaluation on
corridor-level traffic speed and volume reaches a 0.001 JSD and
a 6.11% MAPE.

I. INTRODUCTION

Accurate travel demand models support urban planning,
mobility system optimization, commercial strategy, public
health, and safety [1], [2], [3], [4], [5], by providing detailed
forecasts of where, when, how, and why people travel.
Over time, travel demand modeling approaches have evolved
from trip-based models [6], [7], which treated individual
trips as independent units, to tour-based models [8], [9]
that grouped linked trips into daily tours, and ultimately to
activity-based models [10], [11], [12] that represent travel as
a function of a person’s activity agenda over a day. Despite
their advancements, traditional activity-based travel demand
models still face key limitations. They rely on simplified
rules and assumptions that may not reflect the variety and
complexity of real-world behavior. Building and applying
these models requires extensive data, development, and cal-
ibration, making them costly and time-consuming. Their
complexity also results in high computational demands, and
built-in assumptions limit their adaptability across regions.
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To address these challenges, our previous work intro-
duced a deep generative activity model [13] trained on
the National Household Travel Survey (NHTS), capable of
generating daily activity chains and assigning locations based
on socio-demographic profiles. The resulting activity and
traffic patterns, such as speed, flow, and origin-destination
distributions, closely match the observed data, and the model
transfers well to other regions with minimal local data.
However, it models individuals in isolation, overlooking
the intra-household coordination seen in real-world travel
behavior, including shared trips and joint schedules.

While prior research has explored household coordina-
tion through rule-based or utility-based methods, learning-
based approaches to modeling coordinated activity patterns
remain underdeveloped. This paper develops a transferable
and scalable travel demand modeling framework, which
extends our previous deep generative model for individuals
to incorporate intra-household coordination. Given socio-
demographic profiles of households, the model generates
daily activity patterns and travel behavior. The proposed
framework will capture the who, when, where, why, and how
of daily travel decisions. Compared to existing literature, our
key contributions include:

• We developed a next-generation travel demand mod-
eling framework that synthesizes travel behavior for
city residents. This scalable and transferable framework
enables automated transportation system simulation and
large-scale human mobility data synthesis in new re-
gions, advancing the state of the art in travel demand
modeling.

• We introduced the Deep Coordinated Activity Model
(DeepCAM) for household-coordinated activity synthe-
sis. DeepCAM captures the interdependence among
household members and their activities, enabling co-
ordinated activity generation.

• We proposed a next-generation travel demand modeling
pipeline that integrates population synthesis, activity
generation, and large-scale agent-based traffic simula-
tion. This pipeline was demonstrated in a full-scale case
study of Los Angeles (LA), with validation against real-
world observations using comprehensive metrics for
both individual behavior and intra-household coordina-
tion.



II. LITERATURE REVIEW

A. Activity-Based Travel Demand Model

Activity-based models (ABMs) represent the state-of-the-
art in travel demand modeling by simulating daily activity-
travel behavior based on individuals’ activity agendas. Bow-
man and Ben-Akiva [11] introduced a discrete choice-based
ABM that captures full-day activity patterns and travel
decisions. Building on this, SimAGENT [10], [12] integrated
population synthesis, land use, and travel simulation to
model the Southern California region. These models improve
behavioral realism but are costly to develop, data-intensive,
and difficult to transfer across regions. Recent efforts address
these challenges through more flexible and transparent mod-
eling frameworks. The ActivitySim platform [14] was created
as an open-source, modular ABM focused on regional adap-
tation and collaborative development. It builds on established
utility-based designs while emphasizing ease of deployment,
transparency, and extensibility for planning agencies.

However, these models still rely on predefined choice
structures with handcrafted assumptions. Learning-based
models offer a more flexible alternative. Liao et al. [13] pro-
posed a transformer-based model trained on survey data that
generates activity-location chains given socio-demographic
profiles and transfers across regions with minimal tuning.
Similarly, Shone and Hillel [15] adopted variational autoen-
coders to synthesize individual activity schedules based on
the learned distribution of travel survey data. Although these
learning-based methods enhance scalability and realism, they
have largely focused on individuals and have not considered
coordinated activity.

B. Household Coordinated Activity Modeling

Household coordination is essential in travel demand mod-
eling, as many travel decisions involve joint activities and
shared responsibilities. Gliebe and Koppelman [16] analyzed
weekday activity patterns of two-person households and
proposed a utility-based structural model for coordinated
daily schedules. Bradley and Vovsha [17] extended this with
a rule-based utility framework for households of up to five
members, capturing joint decision-making.

To capture heterogeneity in household decision processes,
Zhang et al. [18] introduced a latent class model incorporat-
ing altruistic and dominant strategies, showing that employed
males and primary car users often exert greater influence.
Shakeel et al. [19] applied a similar model to weekly activity
generation, identifying four behavioral household segments
shaped by structure and schedules. While Zhang focused
on intra-household dynamics, Shakeel emphasized inter-day
variation in joint activity behavior.

Building on the need to capture more dynamic and
interactive household behavior, Arentze and Timmermans
[20] proposed a need-based model for multi-day, multi-
person activity generation. In this framework, individuals
select activities based on evolving needs and adaptive utility-
of-time thresholds, while accounting for within-household
interactions. Bhat et al. [21] later developed a comprehensive

Fig. 1: System framework of the proposed next generation
travel demand model.

household-level model using a multiple discrete-continuous
extreme value framework. It predicts both independent and
joint activity participation across all household members
and activity types. Estimated on Southern California survey
data, the model integrates detailed attributes and offers
computational efficiency, making it suitable for large-scale
simulation.

While these aforementioned models are effective, they are
limited by the assumptions about decision rules or house-
hold segmentation, lacking adaptability to varying contexts.
They also face data constraints, with high costs in data
collection, model development, and calibration, and pose
significant computational demands. A learning-based mod-
eling approach is thus needed to flexibly infer coordination
behaviors directly from data without heavily relying on pre-
defined assumptions.

III. PROBLEM FORMULATION

Based on the household profiles, the travel demand frame-
work generates daily travel trajectories, including individ-
ual activities, household-level interactions, activity locations,
route and mode choices, and the resulting network loads.

The proposed generative framework, illustrated in Fig. 1,
begins with population synthesis, creating synthetic house-
holds based on census statistics. Each agent pi belongs to



a household H described by household-level features h,
and each agent is further characterized by individual socio-
demographic features fpi .

Then, given the h and fpi
, the Deep Activity Model

(DeepAM) [13] generates an initial activity chain for the
household head. An activity chain for agent pi is defined as
a time-ordered sequence Api = {A1,pi , A2,pi , . . . , An,pi},
where each element An,pi

= [Tn,pi
, Sn,pi

, En,pi
] represents

the n-th activity conducted by agent pi. Here, Tn,pi
denotes

the activity type, while Sn,pi
and En,pi

represent the start
time and end time of the activity, respectively.

The seed chain Api of the household head, together
with the household attributes h and the socio-demographic
features of all household members {fp1

, . . . , fpn
}, is used

by the DeepCAM to generate activity chains {Ap1 , . . . , Apn}
for other household members, capturing shared activities and
inter-personal dependencies.

A comprehensive travel demand model assigns each
activity in a chain with a zonal-level location zi,pi where the
Ai,pi

occurs. Next, these location-annotated trajectories are
then input into a simulation engine, where mode choice mi,pi

and route choice ri,pi
of each activity and traffic dynamics

are subsequently evaluated. Finally, we obtain travel
demand in trajectories for all residents of a city, as Trajpi =
{(A1,pi , z1,pi ,m1,pi , r1,pi) , . . . , (An,pi , zn,pi ,mn,pi , rn,pi)}.

IV. METHODOLOGY

A. Population Synthesis

The population synthesis module, shown in Fig. 1, ini-
tializes the generative framework by creating a synthetic
population aligned with regional census distributions. Each
household is assigned attributes such as size, income, vehicle
ownership, and home location at the TAZ level, while indi-
vidual members receive characteristics such as age, employ-
ment status, student status, education, and license ownership.
Households serve as the core unit, enabling coordinated
activity generation across members in subsequent stages.

We adopt a modular design in which the population
synthesis process is decoupled from activity generation and
coordination modules. This enables flexibility in the choice
of synthesis tools and ensures that the overall framework
remains adaptable across geographies and modeling contexts.
Standard population synthesis tools such as PopGen [22],
[23] and SimAGENT [24] can be readily integrated, and
more recent data-driven or generative alternatives [25] can
also be used without altering the downstream modeling logic.

B. Activity Generation

1) Household Head Activity Generation: DeepAM, devel-
oped in our previous work [13], is a generative deep learning
model designed to synthesize realistic daily activity chain for
individuals. Trained on the NHTS, it captures the complex
relationships between activity patterns and a wide range of
inputs, including 13 types of socio-demographic attributes
of the target individual and household members, as well
as 13 types of household and zonal characteristics such as

Fig. 2: Network structure of DeepCAM.

vehicle ownership, home ownership, population density, and
residential classification.

DeepAM generates activity chain autoregressively for each
activity Ai,pi

until a special end-of-day token is emitted.
Built on a transformer-based architecture, DeepAM effec-
tively models temporal dependencies and contextual influ-
ences, capturing how past activities, as well as the presence
and roles of other household members, inform the generation
of future activities.

Demonstrated high fidelity in synthesizing observed activ-
ity patterns across multiple regions. By generating individu-
alized activity chains that closely align with empirical data,
DeepAM serves as a foundational component for simulating
travel demand. Building on this foundation, the DeepCAM
extends DeepAM’s capabilities to model household-level
activity planning and coordination. Since decision-making
within households often skews toward employed males and
primary vehicle users [18], the activity chain of the house-
hold head, generated by DeepAM, is used as the seed
schedule for DeepCAM. The household head is selected
based on a priority ranking that considers age, employment
status, possession of a driver license, vehicle access, and
gender.

2) Household Coordinated Activity Generation: The pro-
posed DeepCAM model is a role-aware multi-person activity
generation network designed to capture both individual-
specific behaviors and coordinated group dynamics, as shown
in Fig. 2, taking two inputs, i.e., an activity chain and a set



of person features.
The modeling process begins by encoding the one-day

activity chains Api
, where each day is divided into 96 time

slots, each representing a 15-minute interval and labeled with
the corresponding activity type. This encoding serves as the
temporal input signal for the network.

To support generating activities for specific individuals,
the model uses a role-feature matching attention mechanism
that processes household feature h and member attributes
f . While a standard transformer [26] allows sharing infor-
mation among household members—critical for modeling
coordination—it can blur individual identities, particularly
in households with similar members, such as siblings.

To address this, the role-feature match attention layer
introduces explicit role-person associations. It takes learned
query vectors representing role positions and aligns them
with the most relevant individual attributes using a soft
matching strategy. This introduces a diagonal bias into the
attention map, encouraging members to associate with their
attributes while retaining flexibility for less clearly defined
roles. This helps the model identify “who is who” before
making any behavioral predictions, ensuring that the pre-
dicted activities are correctly linked to each individual rather
than being arbitrarily assigned. A residual connection from
original attribute embeddings preserves individual identity
throughout.

The refined person features pass through a transformer
encoder to capture interdependencies among members. A
decoder then integrates these with the input activity se-
quence, conditioning predictions on both person context and
prior activities. Each decoder output is concatenated with
individual features and fed through fully connected layers
to produce activity logits. A masking mechanism handles
variable household sizes by restricting predictions to valid
individuals. This architecture enables DeepCAM to model
coordinated household behavior by embedding roles and
identities at multiple stages.

3) Loss Function Design: The overall training loss con-
sists of a cross-entropy term and an auxiliary regularization
term designed to penalize overconfident activity predictions:

Ltotal = LCE + λAOR · (Rindividual +Rhousehold)

where λAOR controls the weight of the regularization term.
The cross-entropy loss is defined as: LCE = −

∑
i ai log(âi),

which encourages the model to assign high probability to
the correct activity label. However, it does not penalize the
model for assigning high probabilities to multiple conflicting
activities, potentially leading to overconfident or ambiguous
predictions.

To address this, we introduce Activity Overconfidence
Regularization, which includes two components. The first,
Rindividual, penalizes per-person overconfidence by measuring
the total predicted probability assigned to incorrect activities:

Rindividual =

∑
b,t,p,a

max(0, p̂b,t,p,a − yb,t,p,a) · wa

Nindividual

The second, Rhousehold, penalizes the overestimation of
group sizes by comparing the predicted and actual total
number of participants for each activity:

Rhousehold =

∑
b,t,a

max
(
0,
∑

p p̂b,t,p,a −
∑

p yb,t,p,a

)
· wa

Nhousehold

Here, b, t, p, and a denote indices over batch samples, time
steps, household members, and activity types, respectively.
The variable p̂b,t,p,a represents the softmax probability that
person p at time t in batch b is assigned to activity a,
and yb,t,p,a ∈ {0, 1} is the corresponding one-hot encoded
ground truth. Nindividual and Nhousehold denote the total number
of person-activity and household-level entries, respectively.
The activity weights wa reflect the degree to which each
activity is expected to be performed individually, derived
from NHTS.

4) Event Table as Coordinated Activity Representation:
To support structured representation for travel demand mod-
eling and simulation, an event table is created to record all
activities, assigning each activity an event ID. This allows
multiple household members to share the same event ID
when participating in the same activity. Although this paper
focuses on household-level events, the structure provides a
foundation for scaling to larger gatherings involving individ-
uals from different households.

Coordinated activities within households are identified by
grouping activities involving multiple household members
that start within a 15-minute window, following the approach
in [12], [27]. These events are further examined to determine
coordination: if all involved individuals report the same
activity type, or if one or more report an ”accompanying”
type (e.g., escort), the event is labeled as a coordinated
activity.

C. Activity Location Assignment

To spatially ground the generated activity chains, we
adapt a previously developed activity location assignment
module [13], which maps each activity to a TAZ. The
algorithm follows three steps:

1) Mandatory Activities: Home, work, and school lo-
cations are assigned first. Commute distances are sampled
from regional distributions, and TAZs are selected by min-
imizing deviation from these targets while ensuring land
use compatibility: Zmd = argminz∈Z

{
d(h, z)− d̂

}
, where

h is the home TAZ, z ∈ Z is a candidate TAZ, d̂ is
the sampled commute distance, and d(h, z) is the network
distance between h and z.

2) Non-Mandatory Activities: Discretionary activities
are placed between anchors by minimizing a weighted
cost of travel distance and directional deviation,
while respecting travel time limits: Znmd =

argminz∈Z

{
α
∣∣∣d− d̂

∣∣∣+ β
∣∣∣θ − θ̂

∣∣∣} , t(zi, zi+1) ≤
Tmax. Here, zprev and znext are the previous and next
anchor TAZs, d̂ and θ̂ are sampled distance and angular
deviation values, α and β are weighting factors, and t(·) is



Fig. 3: Traffic simulation for LA using MATSim.

the travel time function constrained by the available time
window Tmax.

3) Spatial Refinement: To match observed spatial distri-
butions D, the activity frequencies are iteratively adjusted:
Dt+1 = Dt + η · (Ftarget − Fcurrent), where Fcurrent and Ftarget
are the current and reference spatial distributions, and η is a
learning rate.

D. Traffic Simulation

In addition to activity patterns and origin-destination (TAZ
pair) data, this study uses traffic simulation to generate fine-
grained trajectories, as presented in Fig. 3. By incorporating
real-world traffic conditions, network dynamics, and agent
interactions, we add another layer to travel diaries with route
choice, mode choice, and second-by-second trajectories, de-
scribing where, when, how, and why people travel. Moreover,
simulation provides an additional validation dimension by
comparing generated traffic with observed data.

1) Mode Choice: Simulating traffic allows assigning re-
alistic mode choices to each trip, so MATSim is adopted as
the simulation platform [28] for mode assignment. Based on
household car ownership and regional mode share statistics
[29], we first initialize the mode assignments, and then MAT-
Sim iteratively adjusts these mode choices through its co-
evolutionary algorithm, allowing agents to adapt their travel
behavior based on experienced utility. The mode choice
utility functions have been carefully calibrated as part of the
LASim framework to accurately reflect travel preferences in
the LA region.

2) Simulation Setup: The simulation framework integrates
several components. The synthetic population is first as-
signed with daily schedules specifying activities, timings,
locations, and initial travel modes. The high-resolution mul-
timodal transportation network is constructed from Open-
StreetMap, including calibrated attributes such as link ca-
pacities and lane numbers. Public transit operations, based
on GTFS (General Transit Feed Specification) data [30], are
incorporated to support realistic multimodal trip chains. The
simulation leverages the calibrated LASim model [31], with
utility parameters for travel time, monetary cost, transfers,
and waiting time optimized to match observed travel behav-
ior in LA. Traffic flow dynamics are also calibrated using
observed count data from Caltrans PeMS [32].

Through this simulation setup, we can evaluate not only
the statistical properties of our generated activity patterns but
also their emergent traffic impacts when executed within a
realistic transportation environment.

V. EXPERIMENTS

A. Data and Experimental Setup

The 2017 National Household Travel Survey (NHTS) [33]
is used for training, which includes demographics, activ-
ity patterns, and travel behaviors from over 129,600 U.S.
households. Given the standardized structure of household
travel surveys, the methodology proposed in this work can
be readily applied to other regions. The original 19 activity
types are aggregated into 15 types based on their associated
locations, and the data is split into training, validation, and
test sets in a 0.8:0.1:0.1 ratio.

To enable a fair comparison with legacy ABM pipelines,
we adopt the same synthetic population as used in the SCAG
ABM [34] generated by the SimAGENT system [24]. Both
our framework and the legacy ABM are applied to simulate
a population of one million residents in the LA region. The
outputs of both models are evaluated against observed real-
world traffic data from Caltrans Performance Measurement
System (PeMS) [32] in the LA region, which serves as the
ground truth for validation.

The models are first trained on NHTS and then transferred
to LA region for large-scale simulation. Prior work [13]
has shown the model’s transferability using limited local
data [35]. Training DeepAM on NHTS takes 3 hours on an
NVIDIA A6000 GPU, while DeepCAM trains in 35 minutes.
DeepAM generates activity schedules for 386,091 SCAG
household heads in 10 minutes, and DeepCAM completes
inference for one million individuals in 35 seconds. These
results highlight the framework’s efficiency and scalability
for large-scale population synthesis.

B. Evaluation Metrics and Results

We evaluate the proposed framework by assessing the
quality of outputs generated by DeepCAM and the realism
of the proposed travel demand framework.

1) Activity Chain Quality: While the initial DeepAM
model for generating individual activity chains was validated
in previous study [13], here we assess DeepCAM’s ability to
generate plausible schedules for all household members. We
evaluate distributional similarity via Jensen-Shannon Diver-
gence (JSD) in activity types, timing, and activity counts.

The quality of the generated activity chains is assessed
as in Fig. 4. The daily activity distributions over time for
both weekdays and weekends are presented in Fig. 4(a)
showing clear differences: work and school activities are
more frequent on weekdays, while religious and recreational
activities are more common on weekends. The correspond-
ing JSD curves remain consistently low, with a maximum
of 0.006, indicating strong agreement between predicted
schedules and NHTS data in temporal activity allocation.
The aggregated distribution of activity types is shown in
Fig. 4(b). The predicted distribution closely matches the



(a) Activity pattern over one day and similarity (JSD) with NHTS

(b) Aggregated activity type distribution

(c) Aggregated start time distribution

(d) Aggregated duration

(e) Number of daily activities

Fig. 4: Daily activity patterns: model prediction vs. NHTS.

Fig. 5: Household activity participation per activity type.

observed data across all activity categories, with a JSD of
0.005. The start time distributions across all activity instances
is illustrated in Fig. 4(c). The peak activity initiation times
in both the morning and late afternoon are well captured by
the model. A very low JSD of 0.002 is reported, indicating
strong temporal alignment of activities. Figure 4(d) compares
predicted and observed activity durations by type, showing
close alignment in medians and variability for most activities.
Minor discrepancies appear in sparse categories like attend
care, which represents only 0.3% of all activities. Overall,
duration patterns are reproduced with reasonable accuracy.
Figure 4(e) evaluates the number of activities per agent per
day. The predicted distribution closely matches the NHTS
data, with a JSD of 0.005. Most individuals perform 2 to
6 activities daily, peaking at 3, which primarily reflects
”home–work–home” schedules.

2) Coordinated Activity Evaluation: Besides generating
realistic activity chains for individual, DeepCAM’s ability to
model intra-household coordination needs to be evaluated.
We examine the distribution of participants across activity
types to assess joint participation behavior, and compare the
demographic composition of participants in joint activities
with patterns observed in the NHTS, such as parents with
children or spouses participating together.

The distribution of participants per activity type is elabo-
rated in Fig. 5. Most activities are performed individually,
with over 85% involving a single participant across both
the predicted data and NHTS, aligning with the finding in
[16]. Joint participation in activities such as buy goods,
recreation, meals, and religious/community events is also
captured, with distributions closely matching the empirical
data. The alignment indicates that DeepCAM is able to
replicate observed coordination patterns within households,
particularly for shared discretionary and family-oriented ac-
tivities.

DeepCAM learns not only how many people coordi-
nate the activity but also captures realistic co-participation
structures across household roles. As illustrated in Fig. 6,
the most frequent role combinations per activity type are
shown for both the predicted data and the NHTS. Key
coordination patterns are well reproduced. For example, self
+ spouse is consistently shown as the dominant pairing for
buy goods, buy services, general errands, and recreation, re-



Fig. 6: Most frequent role combinations per activity type.

flecting accurate modeling of spousal routines. Child + child
combinations dominate school, while religious/community
and visit activities frequently involve self + spouse and
mixed-generation groups such as child + self or parent + self.
Less common combinations, including non-relative (e.g.,
housemates) + self, are also captured for certain discretionary
activities like work and visit. Overall, the predicted role
combinations align well with observed patterns, though small
discrepancies are observed in low-frequency activities such
as attend care, where the model tends to overrepresent child-
dominant groups.

3) Full-Pipeline Simulation Validation: To validate the
complete framework, we assess the realism of aggregate
travel demand after location assignment and traffic simula-
tion. Simulated traffic volume, speed, and flow are compared
against real-world observations from the PeMS, which serves
as the ground truth. In addition to absolute comparison, we
benchmark our results against outputs from the legacy SCAG
ABM, which represents the baseline for current regional
modeling practice. Aggregate measures such as Vehicle
Miles Traveled (VMT), origin-destination (OD) matrices,
traffic speed, and traffic volume are evaluated.

Fig. 7: Validation for activity location assignment and traffic
loading at network level and corridor level

As shown in Fig. 7(a), the assigned activity locations
closely match the result of SCAG ABM across all LA
sub-regions, with a cosine similarity of 0.97 between OD
matrices. Fig. 7(b) presents the simulated freeway-level VMT
over 24 hours. The proposed framework closely tracks SCAG
ABM patterns, achieving a JSD of 0.006 and a MAPE of
9.8%, closely replicating SCAG ABM’s system-level traffic
dynamics while offering significantly lower modeling cost
and improved computational efficiency.

The corridor-level comparison is presented in Fig. 7(c) and
(d), where the proposed method is compared with SCAG
and PeMS data, revealing high traffic demand and recurring
congestion during daytime hours in the southbound direction
of the studied I-405 corridor, covered by 20 loop detectors,
around 8.5 miles. Congestion on the southbound direction
emerges primarily after noon and persists into the evening
peak. The proposed framework achieves a MAPE of 9.07%
for traffic volume and 6.11% for speed, and a JSD of
0.022 for traffic volume and 0.001 for speed, indicating
strong consistency with observed traffic dynamics across
both flow and speed dimensions. During the light traffic
hours (0:00–5:00 and 22:00-24:00), the proposed framework
slightly underestimates free-flow speeds compared to PeMS
observations, as shown in Fig. 7(d). This bias is partially
due to the preset speed limit in MATSim, leading to reduced
early-morning free-flow speeds.

VI. CONCLUSION AND FUTURE WORK

This paper presents a travel demand modeling framework
that extends deep generative activity models to capture intra-
household coordination. The modular pipeline integrates
population synthesis, activity generation (individual and co-
ordinated), spatial assignment, and traffic simulation. We
demonstrate the model’s ability to generate realistic daily
activity patterns at both individual and household levels and
validate the resulting demand using observed traffic data
from a large-scale LA case study. The model effectively cap-
tures temporal, spatial, and social dynamics while remaining
efficient and transferable.



Future work will extend coordination modeling to social
networks beyond households, such as friends and co-workers.
We also plan to incorporate real-world mobility data, like
GPS traces, to complement survey-based inputs and address
limitations such as sampling bias and self-reporting errors.
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