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ABSTRACT1
Understanding human mobility patterns is crucial for urban planning, transportation management,2
and public health. This study tackles two primary challenges in the field: the reliance on trajectory3
data, which often fails to capture the semantic interdependencies of activities, and the inherent4
incompleteness of real-world trajectory data. We have developed a model that reconstructs and5
learns human mobility patterns by focusing on semantic activity chains. We introduce a semi-6
supervised iterative transfer learning algorithm to adapt models to diverse geographical contexts7
and address data scarcity. Our model is validated using comprehensive datasets from the United8
States, where it effectively reconstructs activity chains and generates high-quality synthetic mobility9
data, achieving a low Jensen-Shannon Divergence (JSD) value of 0.001, indicating a close similarity10
between synthetic and real data. Additionally, sparse GPS data from Egypt is used to evaluate11
the transfer learning algorithm, demonstrating successful adaptation of US mobility patterns to12
Egyptian contexts, achieving a 64% of increase in similarity, i.e., a JSD reduction from 0.09 to 0.03.13
This mobility reconstruction model and the associated transfer learning algorithm show significant14
potential for global human mobility modeling studies, enabling policymakers and researchers to15
design more effective and culturally tailored transportation solutions.16

17
Keywords: Human Mobility Patterns Modeling, Transfer Learning, Semi-Supervised Learning,18
Synthetic Mobility Data19
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INTRODUCTION1
Understanding human mobility patterns has become increasingly crucial in various fields, including2
urban planning, transportation management (1, 2), and public health (3). As urbanization accelerates3
and population mobility increases, the ability to accurately comprehend and predict human activity4
patterns has gained paramount importance. This knowledge not only aids in optimizing urban5
resource allocation but also provides essential insights for the development of smart cities.6

However, current research on human mobility patterns faces two significant challenges.7
First, most studies rely heavily on trajectory data to analyze spatio-temporal patterns, which often8
fall short in capturing the underlying semantic interdependency among activities. This approach9
fails to answer critical questions about human behavior, such as how people schedule their daily10
activities, what activities typically follow one another, and how activities are distributed within a11
day (e.g., working and school period). Understanding these semantic relationships is crucial for12
developing a comprehensive model of human mobility.13

The second challenge stems from the nature of real-world trajectory data, typically collected14
through GPS-enabled devices like smartphones (4–7). Due to the intermittent nature of data15
collection and privacy concerns, these datasets often provide incomplete or fragmented views of16
individuals’ daily mobility pattern. This incompleteness makes it difficult to model and understand17
the full spectrum of human activities and their interdependencies throughout a day or across different18
contexts.19

To address these challenges, innovative approaches that can understand and then reconstruct20
semantic activity chains are in demand. Such methods must be capable of inferring missing activities,21
understanding activity dependencies, and capturing the temporal patterns of human behavior. Recent22
studies have explored annotating human trajectories with semantic information, linking activities23
to trajectories, which enables the use of natural language processing (NLP) techniques on these24
annotated trajectories (8, 9). Even though with more semantic information, developing these25
models to learn mobility pattern is still particularly complex when dealing with incomplete datasets,26
especially in regions where comprehensive ground truth data is unavailable, rendering traditional27
supervised learning approaches ineffective. In such scenarios, we must explore alternative methods28
that can leverage incomplete datasets, leading us to consider semi-supervised learning techniques29
and transfer learning approaches.30

In this paper, we propose a model for reconstructing and learning human mobility patterns,31
focusing specifically on semantic activity chains. This model captures common patterns across32
agents, learns activity dependencies, and understands the characteristics of each activity, allowing33
to effectively reconstruct and infer missing parts of activity chains. Furthermore, considering that34
human mobility patterns vary across different regions due to cultural and environmental factors, and35
recognizing the challenge of modeling these patterns in areas with limited or fragmented activity36
data, we propose a novel semi-supervised approach for cross-dataset transfer learning. This learning37
strategy addresses the limitations of traditional supervised learning, which requires ground truth38
data, and enables effective cross-dataset and cross-region knowledge transfer. Consequently, this39
semi-supervised transfer learning approach allows our model to adapt to diverse geographical40
contexts and overcome data scarcity issues.41

With such capability for human mobility reconstruction and knowledge transfer, this model42
offers significant potential for urban planning, policy development, and transportation system43
analysis across diverse regions. It serves as a powerful tool for data augmentation, enabling the44
generation of high-quality synthetic mobility data in areas with limited observational data. This45
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approach facilitates comprehensive data mining and analysis, providing insights into complex1
mobility patterns. Furthermore, the model’s ability to synthesize realistic mobility data significantly2
advances the field of transportation modeling by enabling the automatic generation of sophisticated3
simulation models.4

Compared to existing literature, our research makes several significant contributions to the5
field of human mobility pattern analysis:6

• We propose a generic framework for modeling human mobility patterns across various7
datasets, regions, and cultures. This framework demonstrates the effectiveness of cross-8
dataset transfer learning, making it suitable for studying human mobility in data-scarce9
environments.10

• We introduce a novel approach to human activity pattern reconstruction, addressing the11
limitations of current trajectory-based methods.12

• Our semi-supervised iterative training method enables transfer learning for scenarios13
lacking ground truth datasets, significantly expanding the applicability of mobility pattern14
analysis.15

RELATED WORKS16
Human Travel Trajectory Reconstruction17
Trajectory reconstruction has become crucial in understanding human mobility patterns, espe-18
cially when dealing with incomplete datasets. Recent advancements have addressed challenges19
of data sparsity and irregularity through innovative techniques. Chen et al. (10) introduced the20
Context-enhanced Trajectory Reconstruction (CTR) method, using tensor factorization to recon-21
struct complete individual trajectories from sparse Call Detail Records. Li et al. (11) proposed22
the Multi-criteria Data Partitioning Trajectory Reconstruction (MDP-TR) method for large-scale,23
low-frequency mobile phone datasets, enhancing reconstruction performance by considering spa-24
tiotemporal patterns of missing data and individual similarities. For GPS data, Zheng et al. (12)25
developed a collaborative system for location and activity recommendations, demonstrating signifi-26
cant improvements in inferring activity types. Alexander et al. (13) emphasized the importance of27
comprehensive temporal and spatial analysis in trajectory reconstruction using mobile phone data.28

Despite these advancements, challenges persist, including the diverse characteristics of data29
sources, limited data accessibility, and restricted model adaptability across different geographic30
regions. These challenges underscore the need for continued research to develop more robust and31
widely applicable reconstruction techniques.32

Transfer Learning33
Recent advancements in transfer learning have shown significant potential for enhancing human mo-34
bility pattern analysis, particularly in scenarios with limited data. Techniques originally developed35
for natural language processing offer valuable insights for trajectory reconstruction and mobility36
modeling.37

Howard and Ruder’s (14) gradual unfreezing technique could be adapted to preserve general38
mobility patterns while adjusting to specific regional characteristics. Peters et al. (15) and Merchant39
et al. (16) suggest that middle layers are often the most transferable, which could be useful when40
adapting mobility models from data-rich to data-scarce regions. Liu et al. (17) explored freezing41
bottom layers while fine-tuning top layers, a strategy that could preserve fundamental human42
movement patterns while adapting to unique characteristics of specific urban environments.43
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These studies collectively suggest strategies for enhancing trajectory reconstruction and1
mobility modeling through gradual adaptation of pre-trained models and selective fine-tuning of2
relevant layers. Future research should focus on adapting these methods to the unique characteristics3
of mobility data, considering spatiotemporal dependencies and the complex nature of human4
movement patterns. Such advancements could significantly improve our ability to model and predict5
human mobility, especially in regions with limited observational data.6

PROBLEM STATEMENT7
Reconstruction Task8
We denote i for an agent. The j-the trajectory collected for the agent contains N stay points,9

Tra ji
j =

{
Pi, j

1 ,Pi, j
2 , . . . ,Pi, j

N

}
. Trajectories are annotated by one of our previous study (8), where10

each stay point is linked with an activity, where each stay point Pi, j
n =

[
T i, j

n ,(x,y)i, j,Si, j
n ,E i, j

n

]
11

consists of activity type T i, j
n (as shown in Table 1), GPS location (x,y)i, j, start time Si, j

n and end12
time E i, j

n . Our goal is to develop a model that can capture the common activity patterns of a region.13
Therefore, we focus on modeling these activity patterns rather than learning the locations of the14
agent. An activity chain is a time-ordered sequence of activities, defined based on the annotated15

trajectory, Ai
j =

{
Ai, j

1 ,Ai, j
2 , . . . ,Ai, j

N

}
, where Ai, j

n =
[
T i, j

n ,Si, j
n ,E i, j

n

]
.16

Due to the fragmented nature of GPS-based data collection methods, stay points usually17
represent only certain moments of the day rather than covering the entire daily activity of the agent.18
As a result, the activity chain A j in a real-world dataset is usually incomplete. For example, an19
observe recorded activities chain (in blue) is shown in the Figure 1. This chain includes "Home"20
from "02-01 00:00 to 02-01 07:00", "Work" from "02-01 08:00 to 02-01 10:00", "Home" from21
"02-02 00:00 to 02-02 04:00", and "Work" from "02-02 06:00 to 02-02 08:00". There are significant22
gaps in the recorded activities, particularly from "02-01 10:00 to 02-02 00:00" and from "02-0223
08:00" onwards.24

Finally, provided an incomplete activity chain in region R1, a model MR1 for region R125
can reconstruct possible missing daily activities, as shown by the dashed gray lines in the Figure26
1, filling up the missing time slots based on the common activity pattern of the region. Based27
on the common activity pattern learned in this region, the model completes the "Work" periods,28
introduces "EatOut (buy meals)" activities, and proposes "Home" activities to complete the daily29
cycle, ensuring a reasonable activity chain.

FIGURE 1: Reconstructed activity chain from an incomplete chain

30
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Performance Evaluation at System Level1
Given the inherent uncertainty in human behavior, predicting the original activity chain of a specific2
agent can be challenging and may not always be appropriate. Therefore, our model aims to common3
pattern, reasonable, align with the distribution of the target region. This approach allows for the4
reconstruction of plausible full-day activity chains while acknowledging the variability in individual5
behaviors.6

The performance of the model is quantified at the system level by assessing the similarity7
between the distributions of generated and real-world (ground truth) activity patterns. In this paper,8
the Jensen-Shannon Divergence (JSD) is adopted as the similarity metric (18), as presented in9
Equation 1. The modeling objective is to minimize the difference between the distributions of the10
generated and ground truth activity patterns derived from activity chains. These metrics are 1)11
activity frequencies, 2) start time, 3) end times, 4) number of daily activities (i.e., length of12
activity chain), and 5) duration of each activity.13

JSD(P∥Q) =
1
2 ∑

x∈X

[
P(x) log

(
P(x)
M(x)

)]
+

1
2 ∑

x∈X

[
Q(x) log

(
Q(x)
M(x)

)]
(1)14

where M = (P+Q)/2. Here P represents the distribution of activity patterns extracted from the15
generated activity chains, while Q represents the distribution of activity patterns computed from16
ground truth activity chains. X represents the full range of probabilities with respect to a specific17
activity pattern statistic. As the JSD approaches zero, it indicates a higher level of similarity between18
the probability distributions being compared, thereby demonstrating the superior performance of19
model in approximating the true distribution.20

DATASET AND DATA CURATION21
Dataset with Complete Activity Chain22
The training of the mobility pattern reconstruction model requires the use of complete activity chain,23
including every activity of an agent in a 24-hour day. Two datasets with completed activity chains24
were utilized in this study to construct the base model.25

In order to learn common mobility patterns at the national level, we used the 2017 National26
Household Travel Survey (NHTS), administered by the Federal Highway Administration (FHWA),27
to capture nationwide mobility patterns (19). The NHTS includes socio-economic demographics28
and travel diaries from 129,600 households. We aggregated the original 19 activity types recorded29
in the NHTS into 15 categories based on the activity locations, which are presented in Table 1. In30
this study, only the travel diary of each agent in NHTS is used for training.31

To learn a specific regional activity pattern, we adopted the activity chain data generated by32
the Activity-Based Model (ABM) of Southern California Association of Governments (SCAG). The33
SCAG ABM is a comprehensive modeling system that integrates a series of activity-related choice34
models, ranging from long-term to short-term decisions, to simulate the activity chains of residents35
in Southern California. This model generates a synthetic dataset that includes detailed information36
about the types and sequences of activities, locations, and start/end times. These features make37
the dataset a valuable tool for analyzing the spatiotemporal dynamics of human activities. Further38
details of the SCAG ABM and its methodology can be found in (20, 21).39
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TABLE 1: Activity category code and their corresponding descriptions

1 Home activities (sleep, chores,
etc) or Work from home

2 Work-related activity or Vol-
unteer

3 Attend school

4 Attend child or adult care 5 Buy goods (groceries, clothes,
gas)

6 Buy services (dry cleaners,
banking, service a car)

7 Buy meals (go out for a meal,
food, carry-out)

8 General errands (post office,
library)

9 Recreational activities (visit
parks, movies, bars)

10 Exercise (jog/walk, walk the
dog, gym, etc)

11 Visit friends or relatives 12 Health care visit (medical,
dental, therapy)

13 Religious or community activ-
ities

14 Something else 15 Drop off/pick up someone

Real-World Trajectory Dataset Processing1
Raw Data to Trajectory2
In this study, we utilized GPS data collected in Egypt, provided by Veraset (22). This data, sourced3
from devices such as smartphones and tablets equipped with location-based applications, exhibits4
inherent randomness due to factors such as GPS drift and measurement error. To address this, we5
developed a methodology to identify stay points to form the trajectory data of each agent.6

Each record in the raw data is a tuple containing the user identification number, time stamp,7
longitude, and latitude. We adopt a 2-step process to extract stay points from the raw data. Because a8
record can be indicative of either a stay or movement, we first label records that are either 5 minutes9
apart in time or 300 meters away in distance from the previous record as stays. Additionally, we10
calculate the speed of the movement from the difference in both space and time between consecutive11
records. Records that show a speed less than 30 kilometer per hour are kept as stay points.12

The second step is to cluster all remaining records, which are now labeled as stay points,13
into stay regions. The aggregation combines nearby stay points that are presumably a user’s visits14
to the same location. We adopt the clustering method outlined in (23), in which the entire region15
covered by the dataset is divided into cells in a grid system, and the cells in the grid are assigned to16
various stay regions according to the stay points detected. For this study, the resolution of the stay17
regions we use is between 0.06378 km2 and 0.12709 km2 (level 9 hexagons in H3).18

Activity Chain Construction by Trajectory Annotation19
Based on the Point-of-interest (POI) data provided by Open Street Map (24) and GPS trajectories20
identified as stay points, we create the activity chain by annotating each stay point with a corre-21
sponding POI and activity. The process begins by using an LLM to match POIs with probable22
activities; for example, a restaurant might be associated with activities like ’buy meal’ and ’work’.23
These categorized POIs with activities are then matched to each GPS-identified stay point, taking24
into account the characteristics of POIs within a 25-meter radius and activities (8).25

This whole activity chain construction process comprises two steps: first, the inference of26
mandatory activities such as Home, Work, and School; and second, the inference of non-mandatory27
activities. Since mandatory activities typically exhibit relatively consistent locations and periodic28
patterns, we employ a rule-based method to infer them, as outlined in Alexander (25). For instance,29
the ’Home’ activity is identified by selecting the stay point that has the highest visit frequency during30
night hours across up to six months. On the other hand, we employ a Bayesian-based algorithm to31
identify non-mandatory activities at each stay point.32
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FIGURE 2: Activity encoding and masking approaches

This algorithm (8) evaluates the probability of each non-mandatory activity type Ti linked1
to POIs at a stay point, by considering factors such as the activity start time S and the characteristics2
associated with involved POIs . To construct the activity chain, we assign each stay point with the3
activity with highest probability, as the equation below:4

T = argmax
Ti

{P(Ti | POI,S)}= argmax
Ti

{
∑
J

P(Ti | POI j,S) ·P(POI j)

}
(2)5

where T is the activity at the stay point, given J POIs and start time S.6

Activity Chain Encoding and Masking7
To effectively process and learn from activity chains, we implement an encoding and masking8
strategy that allows our model to handle diverse activity sequences and simulate incomplete data9
scenarios. We encode a day’s activity chain into a sequence of 96 time slots, each representing a10
15-minute interval. This fine-grained representation allows us to capture detailed temporal patterns11
of activities. Each activity in the chain is assigned to its corresponding time slots based on its start12
and end times. For instance, in the Figure 2 shown, "Home1" occupies the slots from 00:00 to 10:00,13
followed by a 30 minute travel time, then "Exercise" from 10:30 to 11:00, and so forth.14

To train our model to reconstruct missing parts of activity sequences and enhance its15
robustness to incomplete data, we employ three distinct masking strategies that simulate common16
data missing scenarios encountered in real-world datasets. The first strategy, activity-based17
masking, involves randomly masking entire activities within the chain, simulating scenarios18
where specific activities are entirely missing from the data. The strategy, period masking, masks19
continuous periods of the day, irrespective of activity boundaries, mimicking situations where data20
for extended periods is unavailable. The third approach is time slot-based masking, which randomly21
masks individual time slots throughout the day, representing sporadic data loss or intermittent data22
collection.23

These masking strategies simulate incomplete real-world data, enrich training examples, and24
push the model to robustly represent activity patterns and their interdependencies. By encoding and25
masking complete activity chain datasets, we generate a diverse corpus that enhances the model’s26
ability to reconstruct activities comprehensively. This method is important for handling incomplete27
data and transferring knowledge to data-sparse regions. Additionally, applying various masking28
techniques to the same activity chain substantially increases the training data volume, improving29
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FIGURE 3: System Workflow for building transferable mobility reconstruction models

the model’s predictive performance and generalizability across different patterns and contexts.1

METHODOLOGY2
System Workflow3
The workflow of the proposed mobility reconstruction system is structured to optimally leverage4
comprehensive household travel survey data for application in less data-rich environments, as5
illustrated in Figure 3. It integrates the principles of semi-supervised domain adaptation in a novel6
methodological framework that does not rely on ground truth data.7

The process initiates with the training of the Mobility Reconstruction Model M0 using8
a comprehensive dataset (e.g., NHTS and SCAG dataset) from data-rich regions like the United9
States, incorporating detailed activity chains from household travel surveys. This model undergoes10
training with various masking techniques that mimic scenarios of data incompleteness, enhancing11
its ability to handle real-world data variations effectively. After training, real-world activity chains12
construction occurs through data mining techniques applied to GPS trajectory data, focusing13
on extracting stay points and annotating trajectories with contextual data from points of interest14
(POIs). These chains remain inherently incomplete, mirroring typical data gaps in datasets. The15
semi-supervised domain adaptation module then starts, introducing a fine-tuning strategy to adapt16
the base mobility reconstruction model to regions with limited and incomplete data, bypassing the17
need for ground truth data.18

This process, which begins by leveraging a complete dataset from a data-rich region and19
then transferring this knowledge to regions with limited or fragmented activity data, embodies an20
innovative iterative process of data synthesis and model refinement. It not only facilitates the robust21
prediction of activity patterns in regions lacking comprehensive data but also enhances the model’s22
generalizability across various geographical contexts.23

Model Design24
Model Structure25
The core of our approach is a sophisticated model architecture designed to reconstruct activity chains26
from masked inputs, leveraging the power of Transformer-based structures (26). This architecture,27
illustrated in Figure 4, is particularly well-suited for sequence-to-sequence tasks and incorporates28
several key components to enhance its effectiveness in handling temporal and contextual information29
inherent in human mobility patterns.30
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FIGURE 4: Network architecture of the mobility reconstruction model

Input Preparation and Enrichment. The model processes masked activity chains that1
simulate real-world data incompleteness, enhanced with temporal context through a detailed labeling2
scheme. Time segments are numerically valued to represent different times of day, from early3
morning (0.15) to night (0.8), illustrating diurnal patterns. Additionally, day-of-the-week labels4
capture weekly cycles, essential for analyzing human activity rhythms.5

Embedding and Feature Concatenation. To optimize processing in the Transformer6
framework, we utilize an advanced embedding strategy. Categorical inputs, such as activity7
types and day-of-week indicators, are converted into dense vectors via embedding layers. These8
embeddings, along with time segment labels, are projected linearly to match the Transformer’s9
dimensional requirements. The resulting vectors are then concatenated, forming an input vector that10
captures both temporal and contextual dimensions of the activity chain, setting a robust basis for11
further processing.12

Transformer-based Sequence Processing. The model features three stacked Transformer13
blocks, each comprising an encoder and a decoder. The encoder uses self-attention to analyze14
embedded inputs, capturing complex dependencies across the activity chain segments beyond the15
limits of recurrent neural networks. The decoder then uses this processed contextual and temporal16
information to predict activity sequences, essential for accurately reconstructing the activity chain.17

Output Refinement and Activity Chain Reconstruction. The decoder’s output is refined18
by a multi-layer perceptron (MLP) with integrated dropout layers, which fine-tunes predictions and19
reduces overfitting, improving model generalization. A SoftMax layer then converts the MLP’s20
logits into a normalized probability distribution, representing potential activity types for each time21
slot.22

The culmination of this process is a fully reconstructed activity chain, with predictions for23
both masked and unmasked time slots. This reconstructed sequence not only serves as a direct24
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comparison to the original input chain but also demonstrates the model’s capacity to infer missing1
data and capture the underlying patterns of human mobility.2

Loss Function Design3
Given the encoding format of 96 time slots to describe daily activities, reconstructing the incomplete4
activity chain can be seen as a classification task for each time slot. The loss function tailored for5
the task of activity chain reconstruction. This loss function incorporates several elements to capture6
various aspects of the reconstruction problem, ensuring that the model learns not only to predict7
activities accurately but also to capture temporal dependencies and transition patterns inherent in8
human mobility data. The loss function comprises the following components:9

Cross-Entropy Loss is commonly used to measure the dissimilarity between predicted10
probability distributions and true activity labels to minimize activity mismatch in each time slot.11

LCE =−∑
c

wc · yc log(ŷc) (3)12

where yc are the true labels for class c, and ŷc are predicted probabilities of for class c. The use of13
class weights wc allows for balancing the loss across potentially imbalanced activity classes.14

Transition Loss focuses on accurately predicting activity transitions by comparing predicted15
changes in activities with the true changes using binary cross-entropy. It is designed to capture16
temporal dynamics by encouraging predicting changes in activities at the correct time points by17
penalizing incorrect transitions. This helps generate more realistic and coherent activity sequences,18
rather than frequently jumping between activities without any pattern.19

LT R =− 1
N

N

∑
i=1

[ti log(t̂i)+(1− ti) log(1− t̂i)] (4)20

where N is the number of time steps, ti and t̂i are true and predicted transitions at time step i (1 if21
activity changed, 0 otherwise).22

Dynamic Time Warping Loss (DTW), LDTW = DTW (ŷ,y), is adopted to evaluate similar-23
ity between predicted sequence ŷ and true sequence y using DTW distance (27).24

Finally, the loss functions L combines three loss terms as below:25
L = w1 ·LCE +w2 ·LT R +w3 ·LDTW (5)26

Semi-Supervised Iterative Transfer Learning27
The proposed transfer learning approach is underpinned by research indicating that over 90% of28
human activity patterns share similarities across different regions, captured by a limited set of29
human motifs (28, 29). This fundamental similarity in human behavior patterns provides a solid30
foundation for transferring knowledge from data-rich regions to those with limited or incomplete31
data. The challenge lies in effectively adapting the model to target regions while preserving the32
universal patterns of human behavior gleaned from the source domain.33

As presented in Figure 3, the base model M0 synthesizes the first dataset SD0, initiating an34
iterative cycle of model refinement. Each iteration involves the generation of a synthetic dataset SDn35
from the raw incomplete activity chains, which serves to train subsequent models Mn+1. This cycle36
continues until the JSD between the synthetic and real-world data converges or meets a predefined37
standard, signaling the adequacy of the model to reconstruct activity chains accurately and its38
readiness for application in new regions.39
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Progressive Unfreezing Approach1
Our fine-tuning strategy employs a progressive unfreezing approach, balancing the preservation of2
fundamental patterns from the source domain with adaptation to the target domain. Based on the3
model structure described in Figure 4, comprising embedding layers, Transformer, and MLP, we4
implement the following phased unfreezing:5

In the Initial Phase (first quarter of epochs), only the MLP and the embedding layer are6
unfrozen. The MLP, being closest to the output, is responsible for the final activity classifications.7
Unfreezing this layer allows the model to quickly adapt its decision-making process to the new8
domain. Simultaneously, unfreezing the embedding layer enables fine-tuning of the basic semantic9
representations of activities and temporal information, such as new features, new activity definitions,10
and temporal patterns.11

During the Intermediate Phase (second quarter of epochs), we additionally unfreeze the12
layer of the Transformer’s encoder and decoder closest to the input. These layers, being nearest13
to the input, is generally responsible for processing the most basic patterns in the sequence data.14
By unfreezing it last, we ensure that the fundamental knowledge learned from the source domain15
is preserved as much as possible while still allowing for subtle adjustments to better fit the target16
domain’s data characteristics.17

In the Final Phase (remaining epochs), we lastly unfreeze the middle layer of the Trans-18
former’s encoder and decoder, which typically capture intermediate-level patterns in the data.19
By unfreezing it, we allow the model to adjust its representation of more complex inter-activity20
relationships and temporal dependencies that may be specific to the target domain.21

This strategy is grounded in the principle that layers closer to the input learn more general,22
transferable features, while those closer to the output learn task-specific features (30). By keeping23
input-near layers of the Transformer frozen, we preserve the universal understanding of human24
activity patterns. The middle layers, typically most transferable (15), are unfrozen last to balance25
adaptation and knowledge preservation. Gradual unfreezing allows the model to capture increasingly26
subtle differences between domains while mitigating the risk of catastrophic forgetting. This27
approach aims to achieve an optimal balance between leveraging knowledge from the data-rich28
source domain and adapting to the specific characteristics of the target domain.29

Training Strategy30
In addition to the progressive unfreezing approach, we employ several techniques to maintain a31
stable learning process and enhance the model’s performance.32

First, to avoid overfitting to the new synthetic data and ensure robustness, we retain 20% of33
the previous iteration’s dataset in each new training cycle. This retention strategy allows the model34
to continuously refine its understanding by integrating information from both new synthetic data35
and a portion of the previously learned data, promoting stability and preventing drastic shifts in36
learned patterns.37

Additionally, real and synthetic data is differentiated during the training process. Specifically,38
we apply a mask-based loss weighting technique to value the contribution of real data more than39
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synthetic data in the loss computation based on the cross-entropy loss term LCE , as follows:1

Lreal =
1
Nr

N

∑
i=1

mi ·LCEi,

Lsynthetic =
1
Ns

N

∑
i=1

(1−mi) ·LCEi

(6)2

where mi is the mask (1 for real, 0 for synthetic), Nr and Ns are the numbers of real and synthetic3
points. Then the total loss function becomes:4

L = w1 · (wl ·Lreal +ws ·Lsynthetic)+w2 ·LT R +w3 ·LDTW (7)5

EXPERIMENT AND RESULTS6
Mobility Pattern Reconstruction7
Training Details8
Training the base mobility pattern reconstruction model requires complete dataset, such as SCAG9
ABM dataset and NHTS data. In this study, SCAG ABM data is selected for training the base10
model, due to its substantial dataset size, in this study we used 700,000 samples for training,11
200,000 samples as validation, and 100,000 samples for testing. The choice is necessitated by the12
data-intensive nature of transformer models. In contrast, the NHTS dataset, containing only 180,00013
samples, proves insufficient for effective training based on our preliminary experiments (9).14

The training protocol encompassed 120 epochs with a batch size of 512. To mitigate potential15
overfitting, we implemented regularization techniques, including dropout, L2 regularization, and16
early stopping. Specifically, the base model training process is stratified into three distinct phases,17
i.e., 1) Model warm-up using unmasked data for 5 epochs. 2) Training on 40% masked data for 4018
epochs. 3) Training on 70% masked activity chain for the remaining epochs.19

Base Model Evaluation20
Our initial evaluation is performed on the SCAG dataset and the NHTS dataset. The model’s21
ability is tested by reconstructing 70% masked activity chains from the test set, using three types of22
masking methods. The similarity of daily activity counts (chain length), activity duration, types,23
and start/end times between the reconstructed and original test set activities is measured.24

The base model MS, trained on SCAG data, performs well when reconstructing masked25
SCAG data, as evidenced by the close alignment of red solid (predicted) and dashed (ground truth)26
lines in Figure 5. This performance is quantified by JSD scores between 0.001 and 0.011 (Table 2,27
row 2). However, when applied to the NHTS dataset without modification, the model’s performance28
declin significantly, with JSD scores increasing to 0.003-0.021 (Table 2 row 3), This indicates that29
the model trained on SCAG data (Los Angeles area) doesn’t adapt well to national patterns.30

TABLE 2: JSD value for similarity measurement across datasets and model performance

JSD Length Duration Type Start Time End Time
SCAG vs NHTS 0.017 0.009 0.059 0.018 0.013

Ms reconstructs SCAG 0.011 0.004 0.004 0.001 0.001
Ms reconstructs NHTS 0.021 0.003 0.017 0.004 0.007

Mn reconstructs NHTS 0.017 0.002 0.001 0.001 0.005
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FIGURE 5: Performance evaluation on SCAG and NHTS dataset

As shown in the first row of Table 2, there are significant differences between these two1
datasets. The JSD scores, ranging from 0.009 to 0.059 across various activity attributes, quantify2
these differences. For instance, as shown in Figure 5, the activity start time distribution shows a3
notable peak for SCAG around 8:00 am, which is less pronounced in the NHTS data. The activity4
type graph reveals that SCAG data lacks representation in categories like childcare, healthcare, and5
religious activities, which are present in the NHTS dataset.6

To address these discrepancies, we implement transfer learning for the model MS, fine-tuning7
only the outer layers (embedding and MLP) of the model MS to capture nationwide patterns from8
NHTS data. This approach yields marked improvements, with the NHTS dataset fine-tuned model9
MN achieving JSD scores as low as 0.001 for activity types and 0.002 for durations (Table 2, row 4).10
Figure 5 visually confirms this improvement, showing close alignment between blue solid lines and11
blue dash lines lines across all distributions. These results demonstrate our algorithm’s effectiveness12
in adapting to different geographical contexts and capturing diverse mobility patterns, despite the13
initial significant disparities between the SCAG and NHTS datasets.14

Beyond its commendable performance in system-level JSD evaluations, the proposed model15
exhibits proficiency in capturing patterns of common activities, with the transfer learning success-16
fully adapting the model from regional to national contexts. As illustrated in Figure 6, the model17
demonstrates remarkable accuracy in reconstructing the temporal patterns of activity start times18
across both datasets.19

Essential activities such as home, work, and school show closely aligned patterns between20
the two datasets, evidenced by low JSD values (0.023, 0.021, and 0.024 respectively), highlighting21
the universality of these routines. Conversely, regional variations are apparent in other activities.22
Shopping patterns, for example, differ significantly, with SCAG data showing a midday peak (JSD23
0.054) versus NHTS’s more even distribution, suggesting distinct regional shopping behaviors.24
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FIGURE 6: The start time of common activities reconstructed by base and its transferred model.

Exercise activities also vary, with NHTS indicating a preference for early morning sessions (JSD1
0.036). These differences likely mirror varying lifestyle choices between urban Los Angeles and2
the broader national context. The model’s consistent low MS and MN values, typically below 0.01,3
confirm its efficacy in capturing these nuances, underscoring its utility for urban planning and4
policy-making by identifying both universal and regional behavioral patterns.5

Semi-Supervised Iterative Transfer Learning6
The domain adaptation capability of the propose training approach is validated using a sparse GPS7
trajectory data collected by Veraset (22) from Egypt. The trajectory data is further processed using8
the trajectory annotation method shown in Figure 3, converting trajectories to activity chains. To9
ensure data quality and representativeness, we implement stringent filtering criteria: only agents10
with a minimum of 7 days of recorded activity were retained, and we exclusively utilize samples11
that captured at least 25% of daily temporal coverage. This rigorous selection process yields a12
substantial dataset of 479,526 samples, which we partition into training (80%) and validation (20%)13
sets. Notably, given the absence of ground truth data in this context, A separate test set is not14
allocated. The foundation for our transfer learning approach to the Egyptian Veraset data is the15
model trained on NHTS dataset, selected for its comprehensive coverage of 15 distinct activity16
types, thus providing a robust baseline for adaptation to the new geographical and cultural context,17
i.e., from the U.S. to Egypt.18

System-Level Analysis19
The Semi-Supervised Transfer Learning approach demonstrates a progressive adaptation of the20
NHTS-based model to the Egyptian context over multiple iterations, as illustrated in Figure 7 and21
Figure 8, which visualize the the adaptation process and provide quantitative results.22
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FIGURE 7: Performance evaluation: model evolution during iterative transfer learning. (a) Activity
chain length, (b) type distribution, and (c) JSD value compared to raw Egypt data.

The progression of the proposed approach in adapting the NHTS-based model to the1
Egyptian context over multiple iterations is elaborated in Figure 7. Figure 7(a) depicts the evolution2
of activity chain length distribution. Notably, the raw Egyptian data’s high frequency of two-3
activity chains (blurred bar) indicates data incompleteness rather than true behavior. As iterations4
progress, the model shifts from the NHTS pattern towards a more realistic Egyptian distribution,5
peaking at 3-4 activities per day. This demonstrates the model’s ability to infer plausible patterns6
from incomplete data. Figure 7(b) depicts activity type frequencies. Home and Work activities7
remain dominant across all iterations, reflecting their universal importance. The model successfully8
adjusts for lower frequencies of activities like Eat out, Religious activity, and Health Care in the9
Egyptian context, while increasing the frequency of BuyGoods activities to match local patterns.10
As the iterations progress, a gradual shift is observed from the initial NHTS-US pattern towards a11
distribution more closely aligned with the raw Egyptian data, indicating successful adaptation to12
local activity patterns.13

The quantitative results are presented in Figure 7(c), which displays JSD values for the14
evaluation metrics across iterations. The first row of the table shows the dissimilarity between15
the U.S. (NHTS) dataset and the Egypt (Veraset) dataset, providing a baseline for comparison.16
Subsequent rows demonstrate the progressive adaptation through iterations. The "Length" column17
reveals a general decrease in JSD values from Iteration 1 (0.0984) to Iteration 6 (0.0351), indicating18
increasing similarity to the target distribution of activity chain lengths by %64. Activity Type JSD19
improves rapidly, reaching a low of 0.0027 in Iteration 4. Start Time reaches its lowest at Iteration 320
(0.0025), while End Time is lowest at Iteration 2 (0.0021), however, these two JSDs increase in21
later iterations.22
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FIGURE 8: Model evolution during iterative transfer learning. Performance evaluation on start
time distribution.

Building upon the previous analysis of JSD values, we further examine the temporal pattern1
(e.g., start time distributions) across iterations to gain deeper insights into the adaptation process.2
Figure 8 presents a series of graphs illustrating the start time distributions for each iteration.3
The initial iteration compares NHTS-US data, Egyptian data, and the model’s predictions, while4
subsequent iterations focus on refining predictions against Egyptian ground truth. In Iteration 1, we5
observe a stark contrast between the NHTS-US data, which shows a pronounced mid-day peak, and6
the more uniformly distributed Egyptian ground truth with multiple smaller peaks. As iterations7
progress, the predicted distribution increasingly aligns with the Egyptian data, reaching optimal8
alignment in Iteration 3 (JSD: 0.0025). This iteration effectively captures the characteristic multiple9
peaks of Egyptian activity patterns, particularly during morning and evening hours. However,10
in Iterations 4-6, a gradual divergence occurs as the model overemphasizes certain peaks while11
underestimating others, resulting in a slight increase in JSD values from 0.0034 to 0.0049.12

Activities-Level Analysis13
A detailed activity-level analysis is presented in Figure 9 and Table 3, which compare the activity14
start time distributions across different activity types for raw Egyptian data, NHTS US data, and15
two iterations of the model’s predictions. This activity-level analysis reveals the cross-cultural16
differences in daily activity patterns and the efficacy of the proposed iterative transfer learning17
approach in adapting to these differences.18

TABLE 3: JSD values for start times of common activities reconstruction in Egypt

JSD values Home Work School BuyGoods EatOut Exercise HealthCare Religious

US vs Egypt (baseline) 0.0954 0.0886 0.1068 0.0268 0.0999 0.0581 0.0546 0.059
Iteration 1 0.0087 0.0449 0.0262 0.0055 0.0269 0.0218 0.0115 0.0134
Iteration 3 0.0094 0.0372 0.0157 0.0051 0.0197 0.0169 0.0089 0.0195

Mandatory Activities: Home activities in Egypt show a more distributed daily pattern19
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FIGURE 9: The comparison for start times of common activities in U.S., Egypt, and the model
adaptation process

compared to the US’s pronounced evening peak. As shown in Table 3, this difference is quantified by1
a high baseline JSD of 0.0954, which is improved to 0.0087 by Iteration 1 and at 0.0094 in Iteration2
3. Work activities start times exhibit a sharp morning peak in both datasets, but the Egyptian data3
shows a broader distribution, suggesting more varied work schedules, and the model progressively4
learns the pattern with JSD decreasing from 0.0886 to 0.0372 by Iteration 3. The peak time of5
School activity are similar across both datasets, and the model quickly capturing this similarity with6
JSD improving from 0.1068 to 0.0157 by Iteration 3.7

Non-Mandatory Activities: BuyGoods patterns are similar between countries but with8
subtle timing differences, reflected in the model’s quick adaptation and maintain stable through9
iterations (JSD: 0.0055 by Iteration 1 to 0.0051 by Iteration 3). This similarity is also presented10
in Eat Out activity. On the other hand, Religious activities show stronger morning and evening11
peaks in Egypt, likely reflecting Islamic prayer times. The model successfully adapts to these12
culturally specific patterns, with the JSD improving from 0.059 to 0.0134 in Iteration 1, though13
slightly increasing to 0.0195 in Iteration 3, still showing good overall adaptation.14

Overall, the model effectively adapts to Egyptian activity patterns, showing rapid progress15
from baseline to Iteration 1 and further refinement by two more iterations. This capability is evident16
both visually and through decreasing JSD values, indicating a close alignment with local data17
while maintaining influences from the NHTS data. This analysis highlights the model’s potential to18
generate realistic synthetic mobility data, reflecting local behaviors and cultural nuances, which is19
crucial for urban planning and cross-cultural behavioral studies.20
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Limitation: Synthetic Data and Model Collapse1
Our transfer learning approach shows promise in adapting mobility patterns to the Egyptian context,2
but it also reveals limitations in later iterations. The deterioration in model performance beyond3
Iterations 2 and 3 aligns with recent findings by Shumailov et al.(31), who reported that "AI4
models collapse when trained on recursively generated data". This phenomenon occurs when5
model-generated content is indiscriminately used in training, leading to the loss of nuanced or rare6
activities in the original data distribution.7

The initial iterations successfully capture broad Egyptian mobility patterns. However, con-8
tinued training on synthetic data risks amplifying minor inaccuracies and biases. This underscores9
that synthetic data, while valuable, is not a panacea for transfer learning. Early stopping, in our case10
at Iteration 3, appears to provide the optimal balance between local adaptation and data integrity.11

This limitation highlights the ongoing importance of collecting data from genuine human12
interactions. Real-world data provides essential grounding that synthetic data alone cannot replicate.13
In conclusion, while our approach demonstrates potential in cross-cultural mobility modeling, it14
also reveals the complexities of relying heavily on synthetic data. Balancing data augmentation15
through transfer learning with the need for authentic, diverse data remains a critical challenge in16
mobility modeling and AI research.17

CONCLUSION AND FUTURE WORK18
This study presents a novel model for reconstructing human mobility patterns by focusing on19
semantic activity chains. Our semi-supervised approach and transfer learning techniques enable20
the model to adapt to different regions and data availability scenarios, addressing the limitations21
of traditional supervised learning methods. The model’s effectiveness is demonstrated through22
extensive validation with datasets from the United States and Egypt, showcasing its ability to23
generate realistic and high-quality synthetic mobility data. These findings highlight the model’s24
potential as a powerful tool for urban planning, policy development, and transportation system25
analysis.26

Future work will focus on enhancing the model by incorporating socio-demographic factors27
of agents to reconstruct more realistic activity chains for different types of people. This improvement28
aims to provide a more personalized understanding of mobility patterns. Additionally, the current29
model is limited to reconstructing semantic activity chains; therefore, future research will extend30
the model to include location reconstruction. This advancement will enable a comprehensive31
modeling of both the activities and their spatial contexts, further enriching the insights into human32
mobility patterns. These developments will enhance the model’s utility for urban planning, policy33
development, and transportation system analysis across diverse geographical contexts and data-34
scarce environments.35
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